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1 Introduction

The increasing deployment of large language mod-
els (LLMs) in real-world applications highlights
the need to understand their reliability and general-
ization capabilities. While being robust is crucial,
i.e. generalizing to new data but the same task
(Hupkes et al., 2023), it is equally important that
models are consistent in their generalization across
different runs. Previous studies have explored con-
sistency (Jang et al., 2022; Bartsch et al., 2023;
Madaan et al., 2024; Weber et al., 2023; Elazar
et al., 2021; Khurana et al., 2021) but have largely
overlooked its relationship with uncertainty. This
paper examines the link between consistency and
uncertainty in LLMs. We hypothesize that uncer-
tain models are less consistent across multiple runs.
To test this, we analyze the behavior of several
LLMs on question-answering tasks, both in open
and closed-book settings, using metrics like log-
likelihood (for uncertainty) and Fleiss’ Kappa (for
consistency). We conduct experiments across five
random seeds on four English and four multilingual
datasets to assess the robustness of these models.

2 Methodology

2.1 Datasets
We selected question-answering (QA) datasets to
examine the link between consistency and uncer-
tainty in large language models, as they require pre-
cise answers, facilitating consistency assessment
across runs. We included both English-only and
multilingual datasets:

English datasets: TruthfulQA (Lin et al., 2022), a
closed-book set designed to test truthfulness and ex-
pression of uncertainty; CoQA (Reddy et al., 2019),
a conversational QA dataset evaluated on the first
question in each dialogue; TriviaQA (Joshi et al.,
2017), in a closed-book format; and SQuAD 1.1
(Rajpurkar et al., 2016), aligned with XQUAD En-
glish for consistency with multilingual evaluations.
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Figure 1: Experimental setup: For each input question,
answers are generated for several seeds. The model’s
consistency is then correlated with the sequence proba-
bility of the answer.

For multilingual analysis, we used xTriviaQA
(Krause et al., 2023), a translated version of Trivi-
aQA in five languages; TyDiQA (Clark et al., 2020),
an open-book dataset covering typologically di-
verse languages in the gold-passage setting; and
XQuAD (Artetxe et al., 2020), a cross-lingual sub-
set of SQuAD, translated into 12 languages.

2.2 Models

We selected four widely-used large language mod-
els for our experiments: OPT (Zhang et al., 2022),
LLAMA-2 (Touvron et al., 2023), BLOOM (Scao
et al.), and GPT-4 (OpenAI et al., 2024). We chose
model variants with parameter counts close to 7
billion for comparability, except for GPT-4, where
the parameter count is undisclosed. We used the
chat version of LLAMA-2 and the GPT-4o mini
variant for GPT-4.

2.3 Metrics

To evaluate model performance and behavior, we
employed metrics that capture robustness, uncer-
tainty, and correctness. These metrics provide
insights into model consistency and confidence
across different conditions.



2.3.1 Robustness

We assessed robustness by measuring consistency
in responses across different seeds within the same
model family, using two metrics: Fleiss’ Kappa
and Model Disagreement Variation.

Fleiss’ Kappa quantifies agreement between an-
notators, ranging from 0 (no agreement) to 1 (per-
fect agreement). In our context, different seeds
of the same model family act as annotators, and
predictions are treated as annotations. We use
BERTScore with a threshold of 0.8 to determine if
two answers are the same.

Model Disagreement Variation examines agree-
ment on the presence of the correct answer
across models, following the approach by
Mostafazadeh Davani et al. (2022). A score of
0 indicates full agreement, while 1 indicates no
agreement.

2.3.2 Uncertainty

We estimate uncertainty in sequence-prediction
tasks by calculating the log-probability of the se-
quence. We use the geometric mean, which as
discussed by Malinin and Gales (2022), is sensitive
to low-probability events, providing a normalized
certainty measure across sequences.

2.3.3 Correctness

We evaluate correctness using three metrics:
ROUGE-L (Lin, 2004), BERTScore (Zhang* et al.,
2019), and a Presence Metric, which checks for the
occurrence of reference answers in model predic-
tions, providing a basic measure of correctness.

3 Experimental Setup

Figure 1 outlines our experimental setup. For each
dataset, we perform inference over the validation
set five times with different seeds. The models are
prompted with the context (for open-book datasets)
and the question. Since our focus is on the relation-
ship between consistency and uncertainty, optimiz-
ing prompts is out of scope.

We use HuggingFace transformers for infer-
ence with quantization on all models except GPT-4,
where we rely on the OpenAI API. A global seed
is set for the transformers models and the corre-
sponding parameter for OpenAI API. Responses
are capped at 40 tokens, and we set top_p to 0.95
for transformers.

4 Results

Figures 2 and 3 present our results for LLAMA-2,
showing the relationships between Fleiss’ Kappa
and sequence log-likelihood, as well as Model Dis-
agreement (MD) and sequence log-likelihood. The
Pearson and Spearman correlations, shown in the
plots, confirm these trends. We see a positive cor-
relation between Fleiss’ Kappa and sequence log-
likelihood, while the relationship between MD and
sequence log-likelihood is negative.

Figure 2: Fleiss’ Kappa vs. Sequence Log-Likelihood
for LLAMA-2.

Figure 3: Model Disagreement vs. Sequence Log-
Likelihood for LLAMA-2.

5 Conclusion

The initial results from our experiments are promis-
ing, showing a significant correlation between
model robustness and uncertainty across different
seeds: lower uncertainty indicates higher consis-
tency. However, this correlation does not extend to
correctness metrics. Given that our open-ended QA
implementation may introduce unforeseen factors,
such as tokenization issues in underrepresented lan-
guages, we plan to extend our analysis to include
Multiple-choice QA for a more controlled evalua-
tion.
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