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Abstract

The ability to generalise well is one of the primary desiderata of natural language processing
(NLP). Yet, what ‘good generalisation’ entails and how it should be evaluated is not well under-
stood, nor are there any common standards to evaluate it. In this paper, we aim to lay the ground-
work to improve both of these issues. We present a taxonomy for characterising and understanding
generalisation research in NLP, we use that taxonomy to present a comprehensive map of published
generalisation studies, and we make recommendations for which areas might deserve attention in
the future. Our taxonomy is based on an extensive literature review of generalisation research, and
contains five axes along which studies can differ: their main motivation, the type of generalisation
they aim to solve, the type of data shift they consider, the source by which this data shift is obtained,
and the locus of the shift within the modelling pipeline. We use our taxonomy to classify over 400
previous papers that test generalisation, for a total of more than 600 individual experiments. Consid-
ering the results of this review, we present an in-depth analysis of the current state of generalisation
research in NLP, and make recommendations for the future. Along with this paper, we release a
webpage where the results of our review can be dynamically explored, and which we intend to up-
date as new NLP generalisation studies are published. With this work, we aim to make steps towards
making state-of-the-art generalisation testing the new status quo in NLP.

1 Introduction

Good generalisation, roughly defined as the ability to successfully transfer representations, knowledge,
and strategies from past experience to new experiences, is one of the primary desiderata for models of
natural language processing (NLP), as well as for models in the wider field of machine learning (Elan-
govan et al., 2021; Kirk et al., 2021; Lake et al., 2017; Linzen, 2020; Marcus, 2018, 1998; Schmidhuber,
1990; Shen et al., 2021; Wong and Wang, 2007; Yogatama et al., 2019, i.a.). For some, generalisation
is crucial to ensure that models behave robustly, reliably, and fairly when making predictions about
data different from the data that they were trained on, which is especially valuable when models are
employed in the real world. Others see generalisation as directly equivalent to good performance and
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believe that without it a model does not truly conduct the task we intended it to. Yet others strive for
good generalisation in models because they believe models should behave in a human-like way – and
humans are known to generalise well. While the importance of generalisation is almost undisputed, and
there are countless papers on the matter, systematic generalisation testing is not the status quo in the
field of NLP. At the root of this problem lies the fact that there is little understanding and agreement
about what good generalisation actually entails, and what types of generalisation should be prioritised
in which scenarios. While generalisation is widely discussed in NLP – in the past five years, in the
ACL anthology alone over 1200 papers mentioned it in their title or abstract – there exists no systematic
framework to characterise and discuss generalisation. Different studies differ amply in the assumptions
they make about when and how models should generalise, and they use a wide range of different experi-
mental and evaluation setups. As a result, it is difficult to understand what the current state of the field is
when it comes to generalisation. It is difficult to understand how results in this area relate to each other,
what sorts of generalisation are being addressed and which are neglected, which forms of generalisation
testing we should prioritise, and how we can adequately assess generalisation in the first place. Missing
answers to all of those questions are standing in the way of better model development: what we cannot
measure, we cannot improve.

In this paper, we introduce a new framework to systematise and understand generalisation research,
and we address questions like the ones above. More precisely,

i) We design a taxonomy to characterise generalisation research, grounded in hundreds of existing
generalisation studies;

ii) We present an in-depth analysis based on over 400 papers with generalisation experiments that
have come out in the last decades;

iii) We make recommendations for which areas we believe deserve attention in the near future and;

iv) We release a set of online tools that can help readers to better understand the current landscape of
generalisation-testing, exploring the data by themselves.

With our taxonomy, analysis and online tools, we aim to lay the groundwork for making state-of-the-
art generalisation testing the status quo in NLP.

1.1 What is generalisation?

Broadly speaking, generalisation is evaluated by assessing how well a model performs on a test dataset,
given the relationship of this dataset with the data the model was trained on. For decades, it was common
to put only one simple constraint on this relationship: that the train and test data are different. Typically,
this was achieved by randomly splitting available data into a training and a test partition. Generalisation
was, thus, evaluated by training and testing models on different but similarly sampled data, assumed
to be independent and identically distributed (i.i.d.). In the past 20 years, we have seen great strides
on such random train–test splits in a range of different applications. Since the first release of the Penn
Treebank (Marcus et al., 1993), F1 scores for labelled constituency parsing went from values in the high
80’s at the end of the previous century (Collins, 1996; Magerman, 1995) and the first ten years of the
current one (e.g. Petrov and Klein, 2007; Sangati and Zuidema, 2011) to scores up to 96 in the recent past
(Mrini et al., 2020; Yang and Deng, 2020). On the same corpus, performance for language modelling
went from per-word perplexity scores well above 100 (Kneser and Ney, 1995; Rosenfeld, 1996) to a
score of 20.5 in 2020 (Brown et al., 2020). In many areas of NLP, the rate of progress has become even
faster in the last few years. Scores for the popular evaluation set GLUE went from values between 60
and 70 at its release (Wang et al., 2018), to scores exceeding 90 less than a year after (most famously,
Devlin et al., 2019), with performances on a wide range of tasks reaching and surpassing human-level
scores (e.g. Devlin et al., 2019; Liu et al., 2019b; Wang et al., 2019, 2018). Yet more recently, strongly
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scaled-up models (e.g. Chowdhery et al., 2022) showed astounding performances on almost all existing
i.i.d. natural language understanding benchmarks.

With this progress, however, came the realisation that, for an NLP model, reaching very high or
human-level scores on an i.i.d. test set does not imply that the model robustly generalises to a wide range
of different scenarios. In the recent past, we witnessed a surge of different studies pointing out gener-
alisation failures in neural models that have state-of-the-art scores on random train–test splits (Blodgett
et al., 2016; Khishigsuren et al., 2022; Kim and Linzen, 2020; Lake and Baroni, 2018; Marcus, 2018;
McCoy et al., 2019; Plank, 2016; Razeghi et al., 2022; Sinha et al., 2021, to give just a few examples).
Some show that when models perform well on i.i.d. test splits, they might rely on simple heuristics that
do not robustly generalise in a wide range of non-i.i.d. scenarios (Gardner et al., 2020; Kaushik et al.,
2019; McCoy et al., 2019), that models over-rely on stereotypes (Parrish et al., 2022; Srivastava et al.,
2022), or bank on memorisation rather than generalisation (Lewis et al., 2021; Razeghi et al., 2022).
Others, instead, discuss cases in which performances drop when the evaluation data differs from the
training data in terms of genre, domain or topic (e.g. Malinin et al., 2021; Michel and Neubig, 2018;
Plank, 2016), or when it is produced by different subpopulations (e.g. Blodgett et al., 2016; Dixon et al.,
2018). Yet others focus on models’ inability to generalise compositionally (Dankers et al., 2022; Kim
and Linzen, 2020; Lake and Baroni, 2018; Li et al., 2021b), structurally (Sinha et al., 2021; Weber et al.,
2021; Wei et al., 2021), to longer sequences (Dubois et al., 2020; Raunak et al., 2019), or to slightly
different task formulations of the same problem (Srivastava et al., 2022).

The examples above are just a few in a long list of studies that aim to investigate the generalisa-
tion abilities of NLP models, focusing in particular on models and training regimes that score well on
traditional train–test splits. At the same time, these works differ amply in the assumptions they make
about when and how models should generalise, and the evaluation settings they use to evaluate that.
They encompass a wide range of generalisation-related research questions, and they use a wide range of
different methodologies and experimental setups. Taken together, this body of work thus illustrates that
there is no real agreement on what kind of generalisation is important for NLP models, and it also brings
into question what kind of generalisation capabilities recent breakthroughs actually reflect. How should
generalisation be tested for, if not with i.i.d. splits? How do we discover which types of generalisation
should be prioritised, how the results of different studies relate to each other, what types of generalisa-
tion are already well addressed and which are neglected? Ultimately, on a more meta-level, how can we
make progress on these important questions without a systematic way to discuss generalisation in NLP?

1.2 The generalisation taxonomy: a bird’s eye view

It is exactly this meta-question that we aim to address with this paper, by proposing a framework that
can be used to systematically characterise and understand generalisation research. More specifically, we
present a generalisation taxonomy, an analysis of existing work on generalisation, and a set of online
tools that can be used by researchers to explore and better understand generalisation studies in NLP. The
generalisation taxonomy we propose is based on a detailed analysis of a large number of existing studies
on generalisation in NLP, and it includes the main five axes along which those studies differ.1 The five
axes capture different aspects of generalisation studies, that together form a comprehensive picture of
the motivation and goal of the study and provide information on important choices in the experimental
setup.

The first axis of our generalisation taxonomy (§2) is the high-level motivation for the study. The
motivation of a study impacts or even determines what type of generalisation is desirable, as well as
what kind of conclusions can be drawn from a model’s display or lack of generalisation. Furthermore,
the motivation of a study shapes its experimental design. It is therefore important for researchers to be
explicitly aware of it, to ensure that the experimental setup aligns with the questions they seek to answer.

1An graphical representation can be found in Figure 1.
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Figure 1: A graphical representation of the NLP generalisation taxonomy we present in this paper. The
taxonomy consists of five different (nominal) axes, that describe the high-level motivation of the work
(§2); the type of generalisation the test is addressing (§3); what kind of data shift occurs between training
and testing (§4), and what the source and locus of this shift are (§5 and §6, respectively).

We consider four different types of motivations: the practical motivation, the cognitive motivation, the
intrinsic motivation, and the fairness and inclusivity motivation.

The second axis in our taxonomy (§3) indicates the type of generalisation the test is addressing.
This axis describes on a high level what exactly it is that a generalisation test is intended to capture,
rather than considering why or how, making it one of the most important axes of our taxonomy. In
the literature, we have found six main types of generalisation: compositional generalisation, structural
generalisation, cross-task generalisation, cross-lingual generalisation, cross-domain generalisation, and
robustness generalisation.

The third axis in our taxonomy (§4) describes what kind of data shift is considered in the general-
isation test. This axis adds a statistical interpretation to our taxonomy and derives its importance from
the fact that data shift plays an essential formal role in defining and understanding generalisation from a
statistical perspective, as well as from the fact that different types of shifts are best addressed with differ-
ent kinds of experimental setups. On the data shift axis, we consider three shifts which are well-attested
in the literature: covariate shift, label shift and full shift. We further include two additional types of shift
– assumed shift and multiple shifts – to account for studies that cannot be labelled with any of the three
main shift types.

In the fourth axis of our taxonomy (§5), we consider what is the source of the data shift used in the
experiment. The source of the data shift determines how much control the experimenter has over the
training and testing data and, consequently, what kind of conclusions can be drawn from an experiment.
We distinguish four different sources of shifts: naturally occurring shifts, artificially partitioned natural
corpora, generated shifts and fully generated datasets.

In the last axis of our taxonomy (§6), we consider what is the locus of the data shift, or, in other
words, for what part of the modelling pipeline generalisation is investigated. The locus of the shift,
together with the shift type, forms the last piece of the puzzle, as it determines what part of the modelling
pipeline is investigated and thus the kind of generalisation question that can be asked. On this axis, we
consider shifts between all stages in the contemporary modelling pipeline – pretraining, training and
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Figure 2: An overview figure of our literature review, including interactions. An interactive version of
this plot can be found on our website https://genbench.github.io/visualisations. For
more detailed explanations and analyses, we refer to §7.

testing – as well as studies that consider shifts between multiple stages simultaneously.

1.3 Our review and analysis: a sneak-preview

Using our taxonomy, we conduct an extensive literature review, in which we survey over 400 papers
in the ACL anthology that contain the (sub)words generali(s|z)ation or generali(s|z)e in their title or
abstract and that consider some form of data shift in their experiment. Using different visualisations, we
analyse the most relevant trends and find several noteworthy patterns (§7.2.2).

First, we observe that the experimental design of a study is not always lined up with its motivation. To
give an example, several studies considering compositional generalisation from a practical perspective
use generated data not reflective of the scenarios that models might in practice be employed in, making it
difficult to draw conclusions that match the proposed motivation of the study. As such, this demonstrates
the importance of the motivation axis in designing generalisation studies. Then, we find that an increas-
ing number of papers investigating generalisation does not explicitly consider the relationship between
train and test data. This trend is likely due to the computational and engineering advances that allow
model training on extremely large corpora: the ever-growing sizes of the training corpora, which are
furthermore often not in the public domain, make it increasingly difficult to determine the relationship
between train and test data, and consequently how generalisation should be evaluated in these scenarios.
A similar issue arises in the setup where pretrained models are tested without further finetuning, such
as in prompting or in-context learning setups. In such setups, there is a shift between pretraining and
testing, which is – for the same reasons as laid out above – difficult to analyse. Our taxonomy provides
the means to understand these problems, and it illustrates that they require further thought in the future
to allow for generalisation testing in such increasingly popular setups. A third important observation is
that many papers that contain a multi-stage modelling pipeline investigate generalisation in one part of
that pipeline, but not in the other (as can be seen in Figure 2, by comparing the number of pretrain-train
and finetune train–test loci with the number of multiple loci). For instance, a researcher might exten-
sively evaluate whether a pretrained model can be finetuned on a large number of tasks, but use random
splits to assess each individual task, or, conversely, they might test generalisation in the finetuning stage
for a single task and draw conclusions about the pretrained model, without considering whether those
results hold also when the model is finetuned on other tasks. Both these scenarios lead to models that
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generalise suboptimally when considered as a whole. Therefore, we argue that in the future it is impor-
tant to prioritise models that generalise well at all levels of the modelling pipeline, and not just in one
phase. Another takeaway is that our results suggest that more meta-studies might be needed that com-
pare results across different values of the same axis, for example, to understand what is the relationship
between results obtained with fully generated data and generated shifts. Such studies can improve our
understanding of how different experimental design choices impact the conclusions that can be drawn
from an experiment. Lastly, we find that both studies on cross-lingual generalisation and studies with a
fairness motivation are under-represented in our review. In part, this may indicate that such studies refer
less explicitly to generalisation in their title and abstract. However, we hypothesise that also prioritisa-
tion in the field plays a role. In particular, the fact that NLP is very English-centric (e.g. Bender, 2011;
Cotterell et al., 2018) is likely to impact the number of cross-lingual studies. For fairness, on the other
hand, under-representation could stem from the fact only relatively recently awareness of the potential
harmfulness of models trained on large, uncontrolled corpora has started to grow. Either way, we believe
that both cross-lingual generalisation and fairness are important matters to prioritise in the future. We
also call to the reader to propose existing papers with these axis values via our website, so that we can
increase our coverage.

1.4 Outline and contributions

We believe that generalisation testing should be the new status quo in NLP, and with this work, we
aim to lay the groundwork for making that a reality. In summary, the contributions of our work are
the following:

i) We present an axis-based generalisation taxonomy that can be used to characterise generalisation
studies in NLP;

ii) We review 449 papers, containing a total of 619 generalisation experiments, using this taxonomy;

iii) With these survey results, we discuss the status of generalisation research in NLP, and we provide
suggestions to steer the field towards more sound and exhaustive generalisation tests.

iv) We present a website where our review results can be (visualised and textually) explored and
(new) generalisation studies can be incorporated.

In the remainder of this paper, we will first discuss the different axes of our taxonomy in more detail
(§2-6). After that, in §7, we will present our review and analysis of the current state of generalisation
research. In §8, we wrap up by summarising our main findings and making concrete recommendations
for the future.

2 Motivation: what is the high-level motivation for a generalisation test?

Now that we have outlined our main objectives, we discuss the five axes in our proposed taxonomy. The
first axis we consider is the high-level motivation of a generalisation study. We identified four closely
intertwined goals of generalisation research in NLP, which we refer to as the practical, the cognitive,
the intrinsic, and the fairness motivation. The motivation of a study impacts or even determines what
type of generalisation is desirable, as well as what kind of conclusions can be drawn from a model’s
display or lack of generalisation. Consider, for instance, cases in which humans fail to generalise. For
a study with a cognitive motivation, model failures in such cases might not be problematic, or perhaps
even desirable. This is unlikely to be the case for studies with a fairness or practical motivation, where
propagation of human biases is usually problematic. Connected to this, the motivation of a study shapes
the decisions that need to be made for its experimental design. It is therefore important for researchers
to be explicitly aware of it, to ensure that the experimental setup aligns with the questions they seek
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to answer. For a study with a practical motivation, for example, it is typically important to consider
a data setup that matches real-world scenarios a model might occur in; this is less relevant for studies
considering generalisation with a cognitive or intrinsic motivation. Given its strong influence on the
other axes of the taxonomy, a study’s high-level motivation is the first axis we discuss. We describe the
four motivations we distinguish below.2

Practical: in what settings can the model be used or improved? One frequently posed motivation to
study generalisation is of a highly practical nature. Studies that consider generalisation from a practical
perspective seek to assess in what kind of scenarios a model can be used, or focus on improving model
generalisation. One question that is often addressed with a primarily practical motivation is how well
models generalise to different domains or differently collected data. For instance, Michel and Neubig
(2018) consider how well machine translation models trained on canonical text can generalise to noisy
data from an internet platform, and Lazaridou et al. (2021) investigate language model generalisation
to different time periods. Other questions that are frequently addressed from a practical perspective
concern biases in the training data, and whether models robustly generalise to datasets that do not share
these (spurious) biases (e.g. Behnke et al., 2022; Zhou et al., 2021).

Cognitive: does the model generalise like a human? A second high-level motivation that drives
generalisation research is cognitively oriented and can be separated into two underlying categories. The
first category is related to model behaviour: human generalisation is a useful reference point for the
evaluation of model generalisation in NLP, because human generalisation is known to be powerful (e.g.
Lake et al., 2017; Marcus, 2003) and, perhaps more importantly, precisely the type of generalisation that
is required to successfully model natural language. Humans learn quickly, from fewer data than models,
and they easily (compositionally) recombine concepts they already know to understand concepts they
have never before encountered (Fodor and Pylyshyn, 1988; Linzen, 2020; Marcus, 2018). These feats
are arguably also important for models; they, therefore, provide a good point of reference for general-
isation testing.3 In some cases, it might be difficult to distinguish cognitive and practical motivations:
assuming human generalisation is strong, a model that generalises like a human should score well also on
practically motivated tests. In our axes-based taxonomy, the difference between cognitive and practical
resides mostly in the types of scenarios that are considered in tests: are the scenarios artificially created
to get a higher-level, isolated impression of how their behaviour compares to human-like generalisation,
or are the scenarios realistic and practically relevant?

The second, more deeply cognitively inspired category contains work that evaluates generalisation
in models to learn more about cognition and language (e.g. Baroni, 2021; Hupkes, 2020; Marcus, 1999;
McClelland and Plaut, 1999). Studies in this category investigate whether a particular model gener-
alises primarily to derive new hypotheses about how human generalisation might work. For instance,
Lakretz et al. (2021b) perform a detailed study of how LSTM models generalise to specific kinds of
nested syntactic constructions, which they then use to inform a human experiment on the same syntactic
constructions.

2As we will see in what follows, the same questions can often be asked with different underlying motivations. This makes it
sometimes difficult to identify what exactly the motivation of a generalisation study is. Often, studies may inform conclusions
along all four dimensions. However, given the importance of the motivation for the implications and design of the study, we
nevertheless try to identify the main guiding motive of a study in our review in §7, and we encourage researchers to be explicit
about the motivation of their future studies.

3We do not always expect from a model the same type or level of generalisation a human exhibits. There are cases in which
it is desirable for models to generalise better than humans, for example across languages – something humans above a certain
age typically do not excel at. In other cases, models already generalise better than humans – consider, for instance, a language
identification system – and would hardly be useful if they did not.
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Intrinsic: does the model capture the task correctly? A third motivation to evaluate generalisation
in NLP models, which cuts through the two previous motivations, appertains to the question “did a model
learn the task we intended it to learn, as we intended it to learn it?". The assumption underpinning this
type of research as a whole is that if a model has truly learned the task it is trained to do, it should
be able to execute this task also in settings that differ from the exact training scenarios. What changes
across studies is the set of conditions under which a model is considered to have appropriately learned
a task. For instance, researchers studying compositional generalisation (see §3.1) assume that a correct
understanding of language implies that the assumed compositional structure of language is captured.
Under that assumption, a model should not have trouble generalising to new inputs that are generated
using the same compositional system. Others instead assume that true language understanding implies
being able to use language across a wide variety of tasks (see §3.3). Yet others argue that if a model
truly captures the relationship between two sentences in NLI tasks (e.g. Bowman et al., 2015a; Marelli
et al., 2014; Williams et al., 2018), it should be able to do so across different data sets, even if those were
sampled in a slightly different way (e.g. Talman and Chatzikyriakidis, 2019). In studies that consider
generalisation from this perspective, generalisation failures are taken as proof that the model – in fact –
did not learn the task as we intended it to learn it (but instead showed behaviour that made us think it
did, for instance by relying on spurious patterns or non-generalisable heuristics). Furthermore, studies
with an intrinsic motivation are usually guided by the purely scientific motive of increasing knowledge
and understanding, rather than targeting a specific goal.

Fairness and inclusivity: does the model generalise in a fair and responsible way? A last yet
very important motivation for generalisation research is the desire to have models that are fair, respon-
sible and unbiased. One category of studies driven by these concepts, often ethical in nature, asks
questions about how well models generalise to diverse demographics, typically considering minority or
marginalised groups (e.g. Bender et al., 2021; Blodgett et al., 2016; Koh et al., 2021), or investigates to
what extent models perpetuate (undesirable) biases learned from their training data (e.g. Dixon et al.,
2018; Hutchinson et al., 2020; Sheng et al., 2019). Another line of research related to both fairness
and inclusivity focuses on efficiency, both in terms of the amount of data that is required for a model
to converge to a solution as well as the necessary amount of compute. In such studies, efficiency is
seen as a correlate of generalisation: models that generalise well should learn more quickly and re-
quire fewer data (see, e.g. Marcus, 2018). The relationship of efficiency with fairness, inclusivity and
responsibility stems from the idea that models that generalise well from small amounts of data are more
inclusively applicable – for instance for low-resource languages or demographic groups for which little
data is available. Furthermore, models that require less compute are more accessible for groups with
smaller computational resources and have a lower environmental impact (see, e.g. Strubell et al., 2019).
While we have not mentioned them before in the respective categories, studies on learning efficiency
can, naturally, also be motivated by practical concerns, as well as by cognitive interests (e.g. comparing
human’s and model’s sample efficiency).

3 Generalisation type: what type of generalisation is a test addressing?

A second important dimension when it comes to characterising generalisation research is what type of
generalisation a test aims to evaluate. The second axis in our taxonomy describes, on a high level, what
it is that a generalisation test intends to capture – rather than considering why or how – making it one of
the most important axes of our taxonomy. We identify and describe six types of generalisation that are
frequently considered in the literature. Some types are rooted in knowledge about human generalisation,
such as those that target compositional (§3.1) or structural generalisation (§3.2). Others, instead, are
motivated by more practical concerns, such as generalisation across tasks (§3.3), languages (§3.4) and
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Figure 3: An infographic that illustrates the six different types of generalisation that we consider in our
taxonomy, which are explained in more detail in §3.1-§3.6.

domains (§3.5), or by an interest in analysing how robustly models generalise (§3.6). An overview of
the types we consider is presented in Figure 3.

3.1 Compositional generalisation

The first prominent type of generalisation that can be found in the literature is compositional general-
isation, which is often argued to underpin human’s ability to quickly generalise to new data, tasks and
domains (Fodor and Pylyshyn, 1988; Lake et al., 2017; Marcus, 2018; Schmidhuber, 1990). Because
of this strong connection with humans and human language, work on compositional generalisation of-
ten has a primarily cognitive motivation, although practical concerns such as sample efficiency, quick
adaptation and good generalisation in low-resource scenarios are frequently mentioned as additional or
alternative motivations (Chaabouni et al., 2021; Linzen, 2020, to give just a few examples). While it
has a strong intuitive appeal and clear mathematical definition (Montague, 1970), compositional gen-
eralisation is not easy to pin down empirically. Here, we follow Schmidhuber (1990) in defining com-
positionality as the ability to systematically recombine previously learned elements to map new inputs
made up from these elements to their correct output.4 In language, the inputs are ‘forms’ (e.g. phrases,
sentences, larger pieces of discourse), and the output that they need to be mapped to is their meaning
or interpretation. Because of the need for both an input and output space, compositional generalisation
is usually evaluated in tasks such as sequence classification (e.g. Bowman et al., 2015b; Hupkes et al.,
2018; Veldhoen et al., 2016), machine translation (e.g. Dankers et al., 2022; Liu et al., 2021; Raunak
et al., 2019), semantic parsing (e.g. Finegan-Dollak et al., 2018; Keysers et al., 2019; Kim and Linzen,
2020; Shaw et al., 2021) or other kinds of generation tasks (e.g. Hupkes et al., 2020; Lake and Baroni,
2018). In such tasks, the in- and output spaces are clearly distinct, and outputs can straightforwardly
be viewed as an interpretation or (proxy) of meaning of its corresponding input. As far as we know,
there have not yet been many explicit systematic attempts to evaluate compositionality in (ungrounded)

4For an elaborate account of the different arguments that come into play when defining and evaluating compositionality for
a neural network, we refer to Hupkes et al. (2020).
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language models.5 If and how compositionality can be adequately evaluated in such models, where
the input and output (form and meaning) are conflated in one space (the space defined by the language
vocabulary), is a question that is yet to be answered.6

3.2 Structural generalisation

Another category of usually cognitively inspired generalisation instead focuses on the extent to which
models can produce or generate structurally (grammatically) correct forms, rather than on whether they
can assign them correct interpretations. Unlike compositional generalisation, structural generalisation
does not require an output space (the meaning or interpretation space; see §3.1). This makes it more
straightforwardly evaluated in form-only models (i.e. language models) and completely natural setups
(i.e. with no need for simplified synthetic input and output spaces). We distinguish two broad categories
of structural generalisation: syntactic generalisation, and morphological generalisation.

Syntactic generalisation Some structural generalisation studies focus specifically on syntactic gener-
alisation. They consider whether models can generalise to novel syntactic structures or novel elements
in known syntactic structures. For instance, Jumelet et al. (2021) and Weber et al. (2021) filter out
from the training data specific licensing environments for negative polarity items and then test whether
models nevertheless learn to generalise to such environments. It is unfortunately difficult to conduct
this type of study, which involves several different training corpora, using very large language models.
On the one hand, their high training cost makes the necessary experiments computationally extremely
expensive. On the other hand, generating specific test splits given knowledge of what is in the training
data is often also not possible for such models, because their training data is not in the open domain.
These limitations prevent researchers from controlling the relationship between the evaluation and train-
ing data, and they make it hard to assess to what extent the incidental examples reported for the large
language models (most notably, in their respective release papers) are reflective of successful generalisa-
tion and, if so, what that entails. Interesting exceptions are a few studies that do explicitly consider shifts
between training and testing in the context of syntactic generalisation, such as those presented by Wei
et al. (2021), Razeghi et al. (2022), and Elazar et al. (2022). Wei et al. (2021), in particular, investigate
how the performance of pretrained language models in tests that assess syntactic rule learning is affected
by a term’s training data frequency, by varying those frequencies in the training corpus. Razeghi et al.
(2022), instead, focus on a larger model trained on more data, and while they do not systematically
vary the training corpus, they do an elaborate analysis of how test performance in their trained models
(GPT-J and GPT-Neo) is affected by absolute and relative frequencies of specific terms in the model’s
training data. Even more recently, Elazar et al. (2022) studies the causal effect of simple statistics from
the training data, such as co-occurrences, on models’ prediction.

Note that the vast majority of other studies focusing on the syntactic abilities of language models
(e.g. Giulianelli et al., 2018; Jumelet and Hupkes, 2018; Linzen et al., 2016; Warstadt et al., 2019, 2020)
focus on whether and how models recognise, represent, and process syntactic information, or they try
to discern the causal mechanisms by which models use such abilities (Amini et al., 2022; Elazar et al.,
2021a; Feder et al., 2021). These works do not (explicitly) consider the relationship between the data
they test on and the data that a model was trained on, and as such they do not specifically study the
models’ generalisation abilities across syntactic structures. We will not further discuss these studies, but

5There are, however, several studies that focus on structural generalisation in such models. Contrary to compositional
generalisation, structural generalisation does not focus on the ability of models to correctly interpret new inputs, or assign
meanings to them, but only on whether they can generalise to their correct form. We will discuss structural generalisation in
the next subsection.

6An interesting example to consider in this context is the qualitative study conducted by Brown et al. (2020) to test if GPT-3
can use novel words correctly in a sentence; as another example, a bit further away from traditional forms of compositionality,
Talmor et al. (2020) finetune pretrained masked language models on multi-hop composition in question answering.

10



in our map of generalisation literature (§7), we will include a few papers in which there is an implicit
yet clear assumption that the test data substantially differs from the training data, for instance because
it includes sentences created with semantically nonsensical words (Gulordava et al., 2018), or unusually
deep levels of recursion (Lakretz et al., 2021a,b) that are not likely to naturally occur in corpora.

Morphological generalisation A second category of structural generalisation studies focuses on mor-
phological inflexion, a popular testing ground for questions about human generalisation. Papers focusing
on morphological inflexion (e.g. Corkery et al., 2019; Dankers et al., 2021; Kirov and Cotterell, 2018;
Liu and Hulden, 2022; Malouf, 2017; McCurdy et al., 2020) are typically rooted in strong cognitive mo-
tivations. While most of this work considers i.i.d. train–test splits, recent studies have focused on how
morphological transducer models generalise across languages (e.g. McCarthy et al., 2019; Pimentel
et al., 2021a; Vylomova et al., 2020) as well within each language (Calderone et al., 2021; Li and Wil-
son, 2021; Liu and Hulden, 2022; Pimentel et al., 2021b; Szolnok et al., 2021; Wilson and Li, 2021).
In doing so, they often take inspiration from wug tests, which are used in psycholinguistics to probe
morphological generalisation to novel words in humans (Berko, 1958; Marcus et al., 1995). In principle,
such studies could also be conducted with large language models but the lack of access to their training
data is, again, a complication for determining whether the supposedly novel words were truly never seen
by the models.

3.3 Generalisation across tasks

A third and completely different direction of generalisation research considers the ability of a single
model to adapt to multiple NLP problems. We refer to this ability as generalisation across tasks, or
cross-task generalisation. Along with the great advancements in NLP models, in the past ten years, the
nature of cross-task generalisation tests has quite substantially changed; we discuss this evolution in the
present section.

Multitask learning Cross-task generalisation in NLP has been traditionally strongly connected to
transfer and multitask learning (Collobert and Weston, 2008). In multitask learning, a model is either
trained on a set of tasks and evaluated on those same tasks, or pretrained on some tasks and then adapted
to others. As this setup favours approaches that benefit from positive transfer across tasks, it implic-
itly studies forms of cross-task generalisation.7 Examples of benchmarks that were originally meant
to address this kind of cross-task transfer – although they are not used as such any longer – are mul-
titask benchmarks such DecaNLP (McCann et al., 2018), GLUE (Wang et al., 2018) and its successor
SuperGLUE (Wang et al., 2019). In recent times, a common approach has been to formulate all tasks
as sequence-to-sequence problems, a direction explored in the DecaNLP benchmark (McCann et al.,
2018), as well as in modelling, by T5 (Raffel et al., 2020), exT5 (Aribandi et al., 2022) and UnifiedSKG
(Xie et al., 2022), among others.

The pretrain-finetune paradigm In the context of multitask learning, cross-task generalisation was
deemed an extremely challenging topic. This has changed with the relatively recent trend in which
models are first pretrained with a general-purpose objective (language modelling, or masked language
modelling) on large natural language corpora. The model is then further finetuned in a second stage,
in which task-specific parameters are added that learn to execute different tasks using the representa-
tions learned in the pretraining stage. The popularisation of this pretrain-finetune paradigm has shifted

7Notably, as illustrated by the work of Weber et al. (2021), the definition of task can be taken liberally in this context,
ranging from traditional notions of NLP tasks to considering subproblems of a single classic NLP task . For instance, while
language modelling constitutes its own task, learning how to handle negative polarity items such as any or ever in a grammati-
cally correct way can be considered a subtask of it.
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thoughts on how to evaluate cross-task generalisation. Rather than evaluating how learning one task
can benefit another, this paradigm instead gives a central role to the question of how well a model that
has acquired some general knowledge about language during pretraining can be used to generalise to
different kinds of tasks in a finetuning stage which involves task-specific parameters (e.g. Devlin et al.,
2019; Howard and Ruder, 2018; Liu et al., 2019b; Peters et al., 2018). Interestingly, in the finetuning
stage, performance on the tasks themselves is typically evaluated with random train–test splits, and thus
generalisation within individual tasks is not necessarily considered.

Zero-shot and few-shot learning The focus of cross-task generalisation studies has more recently
shifted even further, to scenarios which consider how well pretrained language models fare in different
tasks without any task-specific parameters.8 In the most extreme case, this implies evaluating a language
model directly on a range of tasks without any further training. To do so, tasks are reformulated as text-
completion problems, such that language models can be prompted directly with a question representing
a specific task (zero-shot learning), potentially preceded by a few examples (few-shot learning) (Radford
et al., 2019). The latter case, in which the intention is that models – without any parameter updates –
‘learn’ from the examples given in the context, is often referred to with the term in-context learning.
Datasets for conducting tasks via prompting are typically created by adapting conventional multitask
datasets, where prompting templates are (often manually) designed for each task (e.g. Mishra et al.,
2022; Wang et al., 2022; Weller et al., 2020). Unfortunately, studies that investigate the relationship
between the training and test data are rare, which leaves many open questions in this area. Where Brown
et al. (2020) report that data leakage from training had a small impact on their results, other recent work
suggests that the impressive capabilities of large language models on zero- or few-shot learning tasks
can largely be attributed to the presence of similar or identical examples in the training corpus (Han and
Tsvetkov, 2022; Razeghi et al., 2022). Moreover, models have been reported to be sensitive to exact
task formulation (Jiang et al., 2020; Schick and Schütze, 2021) and even to the order of the examples
given in the few-shot setting (Lu et al., 2022), to some extent contradicting the intuitive idea of task
understanding – and thus being considered as evidence against models’ generalisation ability.

In-context finetuning A different class of studies that considers task evaluation in the prompting setup
are those that finetune a pretrained model with prompts from one set of tasks and then evaluate them
on another set of tasks (e.g. Sanh et al., 2022; Wei et al., 2022; Zhong et al., 2021). Parallel to the
term ‘in-context learning’, this scenario is often referred to with the term in-context finetuning. Here,
the relationship between task performance and generalisation is clearer than in the zero- and few-shot
learning setups. While also in this case the pretraining corpus is uncontrolled, at least the relationship
between the finetuning training and test data can be monitored, and the performances on the test data
with and without finetuning easily compared. Nevertheless, there are few studies that do so.

3.4 Generalisation across languages

A fourth type of generalisation is generalisation across languages, or cross-lingual generalisation. As
described by Bender (2011), the availability of truly language-dependent NLP technologies would be
very valuable from both a scientific and practical perspective. However, the field of NLP has been very
biased towards models and technologies for English9, and most of the recent breakthroughs rely on
amounts of data that are simply not available for the vast majority of the world’s languages. Cross-

8If the pretraining corpus is seen as a large collection of different uncontrolled tasks, this scenario is more similar to the
original multitask learning scenario than the pretrain-finetune paradigm.

9To the point that, as pointed out in the same article from Bender (2011), studies that focus only on English do not even
systematically report that this is the language that they are reporting results for.
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lingual generalisation is thus extremely important to promote the inclusivity and democratisation of the
field, as well as from a practical perspective.

Cross-lingual finetuning There are several ways in which cross-lingual generalisation can be evalu-
ated. Most existing cross-lingual studies focus on the scenario where labelled data is available in a single
language (typically English), and the model is evaluated in multiple languages. A common approach to
address this problem is to finetune a multilingually pretrained language model on the English labelled
data, and then transfer to the rest of the languages in a zero-shot fashion (e.g. Pires et al., 2019; Wu and
Dredze, 2019).10 For instance, Pires et al. (2019) show that Multilingual BERT (Devlin et al., 2019)
finetuned on English generalises well even to languages with different scripts, but exhibits some system-
atic deficiencies that affect language pairs that have different word-order features, such as English and
Japanese.

Multilingual learning A second way in which cross-lingual generalisation can be evaluated is by con-
sidering whether models trained on multiple languages at the same time (multilingual models) perform
better than models trained on only one language. In multitask learning, approaches that are simulta-
neously trained on multiple tasks can be seen as an implicit evaluation of generalisation across tasks.
Similarly, multilingual models trained on multiple languages can be seen as implicitly evaluating gener-
alisation across languages. There is a large number of papers that investigates and proposes multilingual
models, usually for language modelling or machine translation (e.g. Aharoni et al., 2019; Al-Shedivat
and Parikh, 2019; Costa-jussà et al., 2022; Fan et al., 2021; Zhang et al., 2020). Most of these papers
have as main aim to introduce improved models, and they are not motivated by generalisation questions.
Some, however, do include explicit generalisation experiments in their setup. For instance, Zhou et al.
(2018) investigate how generalisation depends on the amount of data added for different languages;
whereas Aharoni et al. (2019) investigate how zero-shot generalisation changes depending on the num-
ber of different languages that a model is trained on.

Multilingual benchmarks As pointed out before, while the field of multilingual modelling is vast
and associated with many interesting generalisation questions, papers in this area do not often focus
explicitly on generalisation. We would, therefore, like to end this subsection by discussing the most
important available multilingual benchmarks which can be used to evaluate cross-lingual generalisation.
Multilingual benchmarks or datasets are created in a variety of ways. Several benchmarks are created by
translating monolingual benchmarks into different languages, usually through a professional translation
service (Artetxe et al., 2020; Conneau et al., 2018; Ebrahimi et al., 2022; FitzGerald et al., 2022; Lewis
et al., 2020; Li et al., 2021a; Lin et al., 2021; Longpre et al., 2021; Mostafazadeh et al., 2016; Ponti
et al., 2020; Williams et al., 2018; Xu et al., 2020; Yang et al., 2019; Zhang et al., 2019). Other multilin-
gual benchmarks, instead, have been built by separately annotating each language via its native speakers
(e.g. Adelani et al., 2021; Asai et al., 2021; Clark et al., 2020; Muller et al., 2021). Yet another way to
construct multilingual benchmarks is to leverage existing resources that cover multiple languages. For
instance, Wikipedia has been used as a resource to derive multilingual benchmarks (Botha et al., 2020;
Liu et al., 2019a; Pan et al., 2017; Rahimi et al., 2019), and several multilingual summarisation datasets
have been created by extracting article-summary pairs from online newspapers or how-to guides (e.g.
Hasan et al., 2021; Ladhak et al., 2020; Nguyen and Daumé III, 2019; Scialom et al., 2020; Varab and
Schluter, 2021). Various linguistic resources have also been exploited: for instance, the Universal De-
pendencies treebank (Nivre et al., 2020) has been used to evaluate cross-lingual part-of-speech tagging,

10Other approaches instead use machine translation to translate test sets into English and directly use an English model or to
translate the training data into another language and finetune a multilingual model on the augmented data. As this setup does
not focus on generalisation per se, but rather depends on the quality of the translation model, we will not further discuss it.
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and multilingual WordNet and Wiktionary have been used to build XL-WiC (Raganato et al., 2020), an
extension of WiC (Pilehvar and Camacho-Collados, 2019) that reformulates word sense disambiguation
in 12 languages as a binary classification task. Finally, in the same spirit of GLUE and SuperGLUE for
English, there are also several aggregated benchmarks that include selected sets of benchmarks previ-
ously proposed by others (e.g. Hu et al., 2020; Liang et al., 2020; Ruder et al., 2021; Wang et al., 2022),
which allow for evaluating cross-task and cross-language generalisation simultaneously.

3.5 Generalisation across domains

The next category we include considers a type of generalisation that is often required in naturally occur-
ring scenarios (more so than the types discussed so far) and is thus very important in practice: generali-
sation across different domains. As examples of the practical relevance of cross-domain generalisation,
consider, for instance, a sentiment analysis model trained to classify the sentiment of reviews for certain
products which then needs to generalise to newly commercialised products, necessarily not represented
in its training data (Ryu et al., 2018; Tan et al., 2019); a model trained on data collected from one demo-
graphic which is then asked to generalise to the entire population (Blodgett et al., 2016); or a machine
translation model trained on canonical text and then expected to generalise noisy data from an internet
platform (Blodgett et al., 2017; Michel and Neubig, 2018) or to data from a different real-world domain
(Malinin et al., 2021). While there is not a precise definition of what constitutes a domain, different do-
mains broadly refer to collections of texts exhibiting different topical and/or stylistic properties, such as
different genres or formality levels. Again, examples help us clarify this definition. MultiNLI (Williams
et al., 2018), for instance, collects training corpora from five different genres (e.g. fiction and telephone
conversations) and includes both an in-domain evaluation set with corpora from those five genres, as
well as an out-of-domain evaluation set with corpora from five more sources (e.g. face-to-face conver-
sations and the 9/11 public report). Blodgett et al. (2016) consider how language identification tools
trained on Standard English generalise poorly to African-American English. Fried et al. (2019) compare
how neural and non-neural constituency parsers generalise on out-of-domain treebanks (e.g. on a tree-
bank of biomedical texts), whereas Artetxe et al. (2021) compare how sparse and dense language models
generalise within and out of domain (on texts from ArXiv, Github, OpenSubtitles, among many other
sources). Kamath et al. (2020) study the problem of selective question answering under domain shift,
where the test distribution includes both in-domain and out-of-domain questions and the model must
abstain from answering when not confident. Connected to this last type of study, there is a substantial
body of work in out-of-domain detection (Hendrycks et al., 2020; Lane et al., 2007; Ryu et al., 2017,
2018; Tan et al., 2019).

Domain generalisation has often been studied in connection with domain adaptation, the problem
of adapting an existing general model to a new domain (Daumé III, 2007). This has been a very active
research area in machine translation (Axelrod et al., 2011; Bertoldi and Federico, 2009; Chu et al.,
2017; Chu and Wang, 2018; Freitag and Al-Onaizan, 2016; Hu et al., 2019; Joty et al., 2015; Koehn
and Schroeder, 2007; Luong and Manning, 2015; Wang et al., 2017a,b), with several standard datasets
(Malinin et al., 2021; Michel and Neubig, 2018) and dedicated tracks in popular shared tasks like WMT
(Bojar et al., 2019; Specia et al., 2020). In addition to machine translation, domain adaptation has also
been studied in part-of-speech tagging (Blitzer et al., 2006), sentiment analysis (Blitzer et al., 2007) and
language model pre-training (Gururangan et al., 2020), among others.

Finally, domain generalisation is closely related to temporal generalisation, where the training data
is produced in a specific time period and the model is tested on data from a different time period, either
in the future or in the past. This problem has been studied in an as yet limited range of tasks, including
language modelling (Lazaridou et al., 2021), named entity recognition in social media (Derczynski et al.,
2016; Fromreide et al., 2014; Rijhwani and Preotiuc-Pietro, 2020), named entity disambiguation (Agar-
wal et al., 2018), document classification (He et al., 2018; Huang and Paul, 2018, 2019) and sentiment
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analysis (Lukes and Søgaard, 2018).

3.6 Generalisation in the context of robustness

The last category of generalisation research we consider on the type axis considers how robust models
are with respect to changes in their exact training data. We refer to such studies, that typically assess
to what extent model performance is independent from the exact training data, with the term robustness
generalisation. Studies of this kind usually focus on train–test shifts that stem from the data collection
process. Different from most of the previous categories discussed in §3, such shifts are generally un-
intended and can be hard to spot. Existing research therefore focuses on characterising such scenarios
and understanding their impact. This line of work is based on the idea that models should learn task
solutions that abstract away over specific, often spurious correlations that may occur in the training data,
i.e. models should learn the underlying generalising solution that humans associate with the task (e.g.
Gururangan et al., 2018; McCoy et al., 2019; Talman and Chatzikyriakidis, 2019). Oftentimes, studies
in this category intend to show that models do not generalise in the way we would expect them to, be-
cause the training data was in some very subtle manner not representative of the true target distribution.
Robustness evaluation is very important from a practical perspective. If a model has a strong sensitivity
to spurious patterns in the training data and is then tested on data collected with the same bias, this can
result in overestimating its performance – either generally or on specific test cases – with potentially
harmful consequences, for instance when a model does not generalise well to particular population de-
mographics. Evaluating generalisation in the context of robustness can be driven by several different
motivations. Some studies are motivated by more practical concerns, or are conducted to gain a better
perspective on intrinsic task understanding, but robustness evaluation is also particularly important when
the goal is to have fair and unbiased NLP models. Below, we discuss three common scenarios associated
with robustness evaluation.

Annotation artefacts A scenario that often occurs in robustness studies is one where there are an-
notation artefacts in the training data, which may result in overestimation of a model’s performance
on a particular task. Artefacts occur particularly frequently when datasets are collected through crowd-
sourcing. Crowdsourced datasets often depend strongly on how exactly the annotation procedure was
set up, with subtle artefacts as a consequence. For instance, annotators may naturally tend to minimise
their cognitive effort, resorting to patterns that models learn to exploit. Popular NLI datasets like SNLI
(Bowman et al., 2015a) and MultiNLI (Williams et al., 2018) have been found particularly susceptible to
such artefacts. For instance, Gururangan et al. (2018) and Poliak et al. (2018) showed that a hypothesis-
only baseline performs better than chance, due to its exploitation of spurious patterns in word choice and
grammatical features (e.g. negation being indicative of the contradiction class). Talman and Chatzikyr-
iakidis (2019) showed that NLI models do not generalise well across different datasets. Besides NLI,
other tasks like question answering have also been reported to suffer from annotation artefacts (Jia and
Liang, 2017; Kaushik and Lipton, 2018), even when such ertifacts were deliberately and consciously
avoided during the annotation process (Elazar et al., 2021b). Finally, Lewis et al. (2021) showed that
open-domain question answering datasets have a high overlap between train and test instances, and
reveal that memorisation plays a bigger role in these benchmarks than previously assumed.

Standardised splits Another line of work questions the way we use data splits in general, and in
particular the extent to which scores on standardised splits that stay static over time are reflective of a
model’s generalisation abilities. For instance, Gorman and Bedrick (2019) show that models perform
much worse on random train–test splits than the reported state-of-the-art performances on a standardised
split. Søgaard et al. (2021) go even further, and advocate for the use of heuristic and adversarial splits,
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where a model’s capability for generalisation is challenged directly – for instance by putting all longer
sentences in the test set, or by splitting the data to maximise the difference between train and test set.

Subpopulation bias A third scenario in which robustness and performance overestimation play a role
is the case where certain demographics are under- or over-represented in the training data. As this may
result in models that generalise poorly to specific demographic groups, it is a particularly harmful case
of overestimation. For instance, Dixon et al. (2018) show that toxicity classifiers suffer from unintended
bias, caused by certain identity terms being disproportionately represented in the training data (e.g. “I
am a gay man” being assigned high toxicity scores because the word “gay” is often used in toxic com-
ments). Similarly, Park et al. (2018) show that abusive language detection models exhibit gender bias,
caused by imbalances in the training data. As a way to detect such imbalances and thus systematically
avoid such cases of overestimation, Koh et al. (2021) propose to evaluate models by their worst-group
accuracy, rather than the average accuracy across all demographic groups, in their CivilComments-Wilds
dataset (a variant of the CivilCommons toxicity classification dataset released by Borkan et al., 2019).

4 Shift type: what kind of data shift is considered?

As we have seen in the previous two sections, tests to evaluate generalisation may differ in terms of
their motivation and the type of generalisation that they target. What they share, instead, is that they
all focus on cases in which there is a form of shift between the data a model is (pre)trained on and the
data that is used for evaluation. In other words, for some datasets (X1,Y1) and (X2,Y2) considered
in the experimental setup, it holds that p(x1,y1) 6= p(x2,y2). In the third axis of our taxonomy, we
discuss how to characterise shifts between the datasets used in a generalisation experiment. This axis
adds a more statistical interpretation to our taxonomy and derives its importance from the fact that
data shift plays an essential role in formally defining and understanding generalisation from a statistical
perspective. On the data shift axis, graphically depicted in Figure 4, we consider three main types of
shift which are well-attested in the literature: covariate shift, label shift and full shift. We further include
two additional types of shift – assumed shift and multiple shifts – to account for studies that cannot be
labelled with any of the three main shift types.

What are, precisely, data shifts? We formalise the differences between the test, training and poten-
tially pretraining data involved in generalisation tests as shifts between the respective data distributions:

p(xtst,ytst) test (1)

p(xtr,ytr) training / finetuning / adaptation (2)

p(xptr,yptr) pretraining (3)

By expressing these data distributions as the product of the probability of the input data p(x) and the
conditional probability of the output labels given the input p(y|x) –

p(xtr,ytr) = p(xtr) p(ytr|xtr) (4)

p(xtst,ytst) = p(xtst) p(ytst|xtst) (5)

we can define four main types of relations between any two data distributions.11 One of these four types
constitutes the case in which there is no shift in data distributions – i.e. both p(xtr) = p(xtst) and

11For clarity, we leave pretraining distributions aside and focus on train–test shifts, as this is the most intuitive setting.
However, the shifts described in this section can be used to describe the relationship between any two data distributions
involved in a modelling pipeline.
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p(ytr|xtr) = p(ytst|xtst). This matches the i.i.d. evaluation setup traditionally used in machine learn-
ing. As discussed earlier, this type of evaluation, also referred to as within-distribution generalisation,
has frequently been reported not to be indicative of good performance for the more complex forms of
generalisation that we often desire from our models. We will not further discuss it here, but instead focus
on the other three cases, commonly referred to as out-of-distribution (o.o.d.) evaluation.

Covariate shift The most commonly considered data distribution shift in o.o.d. generalisation research
is one where p(xtst) 6=p(xtr) but p(ytst|xtst)=p(ytr|xtr). In this scenario, often referred to as covariate
shift (Moreno-Torres et al., 2012; Storkey, 2009), the distribution of the input data p(x) changes, but the
conditional probability of the labels given the input – which describes the task – remains the same. Under
this type of shift, one can evaluate if a model has learned the underlying task distribution while only
being exposed to p(xtr,ytr). In NLP, covariate shift is a very common shift to evaluate in generalisation
research. For example, challenge test sets such as HANS (McCoy et al., 2019), PAWS (Yang et al.,
2019), or the COGS (Kim and Linzen, 2020) test set contain deliberately unusual, out-of-distribution
examples, selected or generated to violate invalid heuristics in assigning labels to data samples. Less
deliberate cases of covariate shift are evaluated in out-of-domain detection or robustness evaluation
studies, such as those conducted by Ryu et al. (2018) and Tan et al. (2019) on real-world datasets. Tan
et al. (2019), for instance, assume that the process by which the sentiment of a sentence is to be computed
does not change, but the data that this process needs to be applied to does. Of the three o.o.d. shifts we
discuss in this section, covariate shift is more easily addressed without performing additional training or
pre- or post-processing than the other two shift types. As we will see in the next paragraphs, a common
approach to address other, more complex shifts, is to turn them into covariate shifts.

Label shift The second type of shift corresponds to the case in which the focus is not on differences
between the input distributions, p(xtst) = p(xtr), but instead in the conditional distributions of the
labels/output: p(ytst|xtst) 6=p(ytr|xtr). We refer to this case as label shift but it is also known as concept
shift (Moreno-Torres et al., 2012). Label shift can happen within the same task when there is a change
of domain – e.g. the phrase ‘it doesn’t run’ can lead to different sentiment labels depending on whether
it appears in a review for software or one for mascara; when there are inter-annotator disagreements; or
when there is a temporal shift in the data (see §3.5). Another common case of label shift is a change in
task (as in §3.3), where the meaning of the labels themselves changes as well. For example, the same
sentence may need to be binarily classified for sentiment in some cases and for toxicity in others. In
even more extreme cases, the labels themselves might change, for example when shifting from language
modelling (where the set of labels is the language vocabulary) to POS-tagging. In NLP studies, label
shift is often seen as an obstacle that needs to be overcome rather than as a setting in which models are
directly evaluated: if the same example has contradictory labels in training and test data, it is unclear
what decision at test time should be considered good generalising behaviour.

In practice, there are two main ways in which label shift is typically addressed. The first is to add an
additional adaptation or finetuning stage, in which a model is updated to represent the shift that occurred
(e.g. Biesialska et al., 2020; Sun et al., 2020), or new parameters are added to represent newly introduced
labels (Devlin et al., 2019; Howard and Ruder, 2018; Peters et al., 2018, i.a.). In that scenario, there is a
label shift between the pretraining and finetuning training data, but not between the finetuning training
and testing data. The level at which generalisation is (somewhat implicitly) evaluated in that case, is
the pretraining level: does my pretrained model adapt well to different conditional label distributions
when further trained? The second way to address label shift is to augment the input data with domain
or task indicators (e.g. Brown et al., 2020; Raffel et al., 2020). We saw before that the phrase ‘it doesn’t
run’ can be both positive and negative, depending on what it describes. Without further information,
it is impossible for a model to infer the correct meaning. By adding indicators that specify the domain
(review for mascara:..., review for software:...), the problem is converted into a
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Figure 4: Types of data distribution shifts that can occur on the shift type axis of our taxonomy.

covariate shift (or potentially even no shift, if both indicators are represented in the two distributions at
hand), which then can be solved by correctly generalising. Something similar happens in the case where
a task is transformed into a question in a prompting setup: by adding a prompt that describes what needs
to be done with the input, label shifts caused by a change of task are turned into a different type of shift
that can be solved without further finetuning (see, e.g. Bach et al., 2022; Brown et al., 2020; Schick and
Schütze, 2021).

Full shift The most extreme type of shift corresponds to the case in which both p(x) and p(y|x)
change simultaneously: p(xtst) 6= p(xtr) and p(ytst|xtst) 6= p(ytr|xtr). We refer to this case with the
term full shift. Full shifts may occur in language modelling tasks, where changes in the p(x) directly
translate into changes in p(y|x)12, or when adapting to new language pairs in multi-lingual experi-
ments (e.g. Costa-jussà et al., 2022; Kodner et al., 2022). Another case of full shift is the one in which
entirely different types of data are used either for pretraining (e.g. Papadimitriou and Jurafsky, 2020,
who test if pretraining on music impacts learning language afterwards) or for evaluation (e.g. De Varda
and Zamparelli, 2022, who evaluate generalisation to different languages). Oftentimes, covariate shifts
might inadvertently also cause label shifts, for instance when the textual domain changes in a sequence-
classification task. In our characterisation, however, if the underlying task stays the same, we will
assume that the (more controlled) covariate shift is the one that is investigated, unless specified other-
wise. Contrary to label shifts, full shifts can, in some cases, be addressed without retraining, because
they do not necessarily imply that the same input x is assigned a different label at test time. However,
similar to label shifts, also full shifts are often turned into different types of shifts that can be more easily
addressed.

Multiple shifts In this section, we have considered three different data distributions and the types
of shifts that can occur between any pair of such data distributions. Some studies, however, consider
shifts between multiple distributions at the same time. For instance, Li et al. (2022) investigate how
different types of pretraining architectures generalise to o.o.d. splits in a finetuning stage; and Wang
et al. (2021) investigate which pretraining method performs better cross-domain generalisation in a
second training stage. In our taxonomy, we label such cases multiple shifts, and – at least in the current
version – we do not distinguish between different configurations of multiple shifts (e.g. label+covariate,
or covariate+covariate). We will discuss multiple shifts further in §6.

4.1 On detecting shift type

We conclude this section by pointing out that while from a formal perspective the shifts that we describe
are well-defined, they may be difficult to tell apart in practice because the base distributions by which

12An exception is the case in which a test consists of predicting only one word, such as, for instance, in a subject-verb
agreement task. In that case, the predicted word is not (“autoregressively”) part of the input of another prediction, and thus it
does not automatically constitute a change in p(y|x).
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Figure 5: Different sources of shifts, with indications of what data is fully natural, indicated with a small
globe, and data that is generated, indicated with a robot icon.

natural languages are ‘generated’ are rarely fully known. As a consequence, it is often not straightfor-
ward to determine what the relationship between two different datasets is. While in some cases there
is nevertheless little discussion on the type of shift that occurs between two datasets, in other cases, it
might be unclear if there is an actual shift, or what its nature is. When classifying shifts in our review,
we will focus on cases where authors (i) explicitly consider the relationship between the data distribu-
tions they use in their experiments and (ii) the assumptions they make about this relationship are either
well-grounded in the literature (e.g. it is commonly assumed that switching between domains constitutes
a covariate shift) or empirically verified. Nevertheless, we identify numerous studies that claim to be
about generalisation where such considerations are absent: it is assumed that there is a shift between
train and test data, but this is not verified or grounded in previous research. Sometimes, the assumed
shift is not explicitly checked because it is considered plausible given general (linguistic) knowledge
about language. Consider, for instance, how Lakretz et al. (2021b), as discussed earlier in §3.2, study
sentences with usually deep levels of recursion. Other times, the relationship between training and test
data is not investigated because the researchers do not have access to the training data. The BigBench
benchmark (Srivastava et al., 2022), for instance, contains several tasks that might measure generalisa-
tion, but the training datasets of the models investigated are not in the public domain. Yet in other cases,
the training data is available to the authors of the paper, but simply no extensive analysis is presented
(e.g. Brown et al., 2020; Chowdhery et al., 2022). In our survey, we also consider this entire body of
work, which we mark assumed shift.

5 Shift source: how are the train and test data produced?

In the previous section, we discussed what types of shifts may occur in generalisation tests. We now
focus on a related relevant dimension, that expresses how those shifts originated: our fourth axis, graph-
ically shown in Figure 5, indicates the source of the differences occurring between the pretraining,
training and test data distributions. The source of the data shift determines how much control the exper-
imenter has over the training and testing data and, consequently, what kind of conclusions can be drawn
from an experiment. Using fully generated data, for example, provides full control and allows to test very
specific aspects in isolation, but might not be suitable to draw conclusions about a model’s behaviour
when it is exposed to a natural dataset. We distinguish four different sources of shifts: (i) naturally
occurring shifts, shifts occurring naturally between different corpora; (ii) splits of natural corpora, in
which the data distributions involved are all natural corpora, but they are artificially partitioned along a
specific dimension; (iii) generated shifts, where the training data is natural, but the test data is designed
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with a specific distribution shift in mind;13 and (iv) fully generated datasets, where all data involved is
generated.

To formalise the description of these different sources of shift, we consider the unobserved base
distribution which describes all data considered in an experiment:

p(xbase,ybase, τ ) base (6)

The variable τ represents a data property of interest, with respect to which a specific generalisation
ability is tested. This can be an observable property of the data (e.g. the length of an input sentence),
an unobservable property (e.g. the timestamp that defines when a data point was produced), or even a
property relative to the model (architecture) under investigation (e.g. τ could represent how quickly a
data point was learned in relation to overall model convergence). The base distribution over x, y and τ
can be used to define different partition schemes, which can be adopted in generalisation experiments.
Formally, such a partitioning scheme is a rule f :T →{true, false} that discriminates data points
according to a property τ ∈T . To investigate how a partitioning scheme impacts model behaviour, the
pretraining, training and test distributions can be defined as:

p(xptr,yptr) = p(xbase,ybase |fpretrain(τ ) = true) (7)

p(xtr,ytr) = p(xbase,ybase |ftrain(τ ) = true) (8)

p(xtst,ytst) = p(xbase,ybase |ftest(τ ) = true) (9)

Using these data descriptions, we can now discuss four different sources of shifts.

Naturally occurring shifts The first scenario we consider is the one in which shifts naturally occur
between different corpora. In such cases, the variable τ refers to properties that naturally differ between
collected datasets. What characterises this type of shift source, is that both the data partitions of interest
are naturally occurring corpora, to which no systematic operations are applied: for the purposes of a
generalisation test, experimenters have no direct control over the partitioning scheme f(τ ). Examples
of naturally occurring shifts emerge from splits containing data from different annotators (Geva et al.,
2019), sources or domains (e.g. Artetxe et al., 2021; Talman and Chatzikyriakidis, 2019), data sampled
from different populations (e.g Dixon et al., 2018; Talat et al., 2018) data from different points in time
(e.g. Lazaridou et al., 2021), or separately collected corpora targeting the same task, such as MNLI
(Williams et al., 2018) and WNLI (Wang et al., 2018). In this category, we also include cross-task and
cross-lingual generalisation studies in which all corpora involved are natural corpora (e.g. FitzGerald
et al., 2022; Mishra et al., 2022).

Splits of natural corpora A slightly less natural setup is the one in which a natural corpus is con-
sidered, but it is artificially split along specific dimensions. The primary difference with the previous
category is that the variable τ refers to data properties along which data would not naturally be split,
such as the length or complexity of a sample. The experimenters have thus no control over the data
itself, but they do control the partitioning scheme f(τ ). Raunak et al. (2020), for instance, split natu-
rally occurring machine translation corpora such that longer sentences occur in the test data, and Weber
et al. (2021) split a language modelling corpus such that the training data does not contain specific types
of negative polarity item licensers. Other examples of natural data splits could be splits that maximise
compound divergence (Keysers et al., 2019) to investigate compositionality.14

13Or, more rarely, the other way around.
14Keysers et al. (2019) themselves do not apply this split to fully natural data, their corpus is fully generated using templates.

20



Generated shifts The third category on our source of shift axis concerns the case in which one data
partition (usually the training set) is a fully natural corpus, but the other partition is designed with
specific properties in mind, to address a generalisation aspect of interest. Data in the constructed parti-
tion may avoid or contain specific (syntactic) patterns (Bhargava et al., 2021; Cui et al., 2022), violate
heuristics about gender (Dayanik and Padó, 2021; Libovický et al., 2022), or include unusually long
or complex sequences (Lakretz et al., 2021a; Raunak et al., 2019). As an example of this shift source,
Dankers et al. (2022) investigate compositionality in MT models trained on fully natural corpora by
constructing test data that addresses compositional generalisation given the specific properties of the
training corpus. For NLI, McCoy et al. (2019) design a test set that cannot be solved with models that
rely on specific heuristics. Fancellu et al. (2017) create a test set for which the select sentences with
negation scopes that are not delimited by punctuation. Another category of studies that fit into this type
are those with adversarial test sets, generated either by humans (Kiela et al., 2021) or automatically
using a specific model (e.g. Sakaguchi et al., 2021; Zellers et al., 2018). In the examples above, all of
the constructed data occurs in the test data; note that the opposite – where instead the training data is
synthetic or generated and the test data natural – is also possible, yet less common (e.g. Papadimitriou
and Jurafsky, 2020).

Fully generated The last category we consider are splits that use only generated data, which some-
times may even be fully synthetic. Generating data is often the most precise way of measuring specific
aspects of generalisation, as experimenters have direct control over both the base distribution and the
partitioning scheme. Sometimes the data involved is entirely synthetic (e.g. Hupkes et al., 2020; Lake
and Baroni, 2018), other times it is templated natural language or a narrow selection of an actual nat-
ural language corpus (e.g Keysers et al., 2019; Kim and Linzen, 2020). Generated splits can vary in
several different dimensions. Sometimes, τ is a simple observable data property. For instance, Hupkes
et al. (2020) split their corpus based on the presence of particular function pairs P , implicitly setting
τ = P ∈ x. In some cases, τ may also be defined relative to the τ of other examples, and can only
be computed globally, such as in the case of maximum compound divergence splitting (Keysers et al.,
2019).

6 Locus of shift: between which data distributions does the shift occur?

In the previous sections, we discussed high-level motivations for studying generalisation in NLP models,
types of generalisation that have been frequently evaluated in the literature, kinds of data distribution
shifts used for generalisation tests, and the possible sources of those shifts. These four axes demon-
strate the depth and breadth of generalisation evaluation research, and they also clearly illustrate that
generalisation is evaluated in a wide range of different experimental setups. What we have not yet ex-
plicitly discussed is between which data distributions those shifts can occur: the locus of the shift. In
our taxonomy, the shift locus forms the last piece of the puzzle, as it determines what part of the mod-
elling pipeline is investigated and, with that, what kind of generalisation questions can be asked. For
instance, shifts between pretraining and training distributions allow the experimenter to investigate if a
particular pretraining procedure is successful, whereas train–test shifts can be used to evaluate a model
instance or a training procedure. We consider shifts between all stages in the contemporary modelling
pipeline – pretraining, training and testing, as well as studies that consider shifts between multiple stages
at the same time, as expressed by the data distributions that we have considered in §4 (for a graphical
representation, we refer to Figure 6).

Given these distributions, there exist five possible loci of shifts: shifts only between the (finetune)
training and the test data, shifts only between the pretraining and the training data, shifts only between
the pretraining and the test data, and shifts between all data distributions. Because they often reflect
different types of experiments, we separate shifts between train and test data without pretraining from
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Figure 6: Different loci of splits, and what parts of the modelling pipeline they may investigate general-
isation for.

shifts between finetuning train and test data. We describe the four loci of shift and how they interact
with different components of the modelling pipeline with the aid of three modelling distributions. These
modelling distributions correspond to the different stages in contemporary machine learning pipelines –
testing a model, training it, and potentially pretraining it:

p(Ytst | Xtst,θ
∗) model (10)

p(θ∗ | Xtr,Ytr,φtr, θ̂) training/finetuning/adaptation (11)

p(θ̂ | Xptr,Yptr,φpr,θ0) pretraining (12)

In these equations, φ broadly denotes training and pretraining hyperparameters, θ refers to model pa-
rameters, and X ,Y indicate sets of inputs (x) and their corresponding output (y). In short, Equation 10
defines a model instance, which specifies the probability distribution over the target test labels Ytst,
given the model’s parameters θ∗ and a set of test inputs Xtst. Equation 11, instead, defines a training
procedure, specifying a probability distribution over model parameters θ∗ ∈ Rd given a training dataset
Xtr, Ytr, a set of training hyperparameters φtr, and a (potentially pretrained) model initialisation θ̂.
Lastly, Equation 12 defines a pretraining procedure, specifying a conditional probability over the set of
parameters θ̂, given a pretraining dataset, a set of pretraining hyperparameters φpr, and a model initial-
isation.15 Between which of these stages a shift occurs impacts which of these modelling distributions
can be evaluated. We discuss the different potential loci of shifts below.

The train–test locus Probably the most commonly occurring locus of shift in generalisation experi-
ments is the one between train and test data. This locus occurs in the classic setup where a model is
trained on some training data and then directly evaluated on a shifted (out-of-distribution) test partition.
Studies with the train–test locus can assess two different parts of the modelling pipeline. In some cases,
researchers investigate the generalisation abilities of a model instance (i.e. a set of parameters θ∗, as
described in Equation 10). Studies of this type therefore report the evaluation of a single model instance
– typically made available by others – without considering how exactly it was trained, and how that im-
pacted the model’s generalisation behaviour. For example, a surge of studies considered the behaviour

15Note that this formalisation generalises to the training from scratch paradigm when Xptr,Yptr = ∅, ∅, and to the in-
context-learning setup when Xtr,Ytr = ∅, ∅.
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of the pretrained language model made available by Gulordava et al. (2018), to investigate how it gen-
eralised to, for instance, different syntactic constructions (e.g. Lakretz et al., 2019).16 Alternatively,
researchers might evaluate one or more training procedures, by considering if the training distribution
results in model instances that generalise well – for example, to study how generalisation compares be-
tween dense and sparse models or how that changes with the scale of the input data (e.g. Artetxe et al.,
2021; Rae et al., 2021), or how different architectures behave on a compositional generalisation test (Mul
and Zuidema, 2019; Saxton et al., 2019). While also this case requires evaluating model instances, the
focus of the evaluation is not on one particular model instance, but rather on the procedure that generated
multiple model instances.

The finetune train–test locus The second potential locus of shift bears similarities to the first one but
instead considers data shifts between the train and test data during finetuning, considering a model that
has already gone through an earlier stage of training. This locus occurs when a model is evaluated on a
finetuning test set that contains a shift with respect to the finetuning training data. An example of this
category would be a test that investigates how well one pretrained model generalises with respect to an
o.o.d. finetuning train–test split (Damonte and Monti, 2021; Kavumba et al., 2022; Ludwig et al., 2022).
The parts of the modelling pipeline that studies with a finetune train–test locus can evaluate are the same
as studies with a train–test locus, although studies that investigate the generalisation abilities of a single
finetuned model instance are rare. More frequently, research with this locus focuses on the finetuning
procedure, by considering if it results in finetuned model instances that generalise well on the finetune
test set. Note that studies evaluating o.o.d. splits during finetuning, often also include a comparison
between different pretraining procedures (e.g. they investigate whether BERT or RoBERTa generalises
better to an o.o.d. finetuning test set, or compare how BERT models trained on different corpora behave
during finetuning). Such studies (usually) investigate both a shift from the pretraining to the finetuning
training data (typically a label shift), as well as a shift in the finetuning stage, and we will mark them as
having multiple loci, as will be further discussed in the last paragraph of this section.

The pretrain-train locus A third potential locus of shift is between the pretraining and training cor-
pus. Experiments with this locus evaluate whether a particular pretraining procedure, as described in
Equation 12, results in models (parameter sets θ̂) that are useful when further trained on different tasks
or domains. For instance, Artetxe et al. (2021) investigate which pretraining procedure shows the best
downstream generalisation in a number of different tasks, Tian et al. (2021) investigate how well pre-
trained models generalise to a newly proposed first-order-logic dataset, and Freitag and Al-Onaizan
(2016) test how well a pretrained NMT model can adapt to different domains. Crucially, we classify
studies as having a pretrain-train locus only when in their second training stage – which is required to
have this locus – they use i.i.d. splits. If also the finetuning stage contains a shift, we say that the study
has multiple loci.

The pretrain–test locus The fourth potential locus of shift is between pretraining and test data. This
locus occurs when a pretrained model is not further updated but evaluated directly (i.e. Xtr,Ytr = ∅, ∅)
– as frequently happens in in-context learning setups (e.g. Lin et al., 2021; Zhang et al., 2022) – or when
a pretrained model is finetuned on examples that are i.i.d. with respect to the pretraining data and then
tested on out-of-distribution instances. The former case (θ∗ = θ̂) is similar to studies with only one
training stage in the train–test locus, but distinguishes itself by the nature of the (pre)training proce-
dure, which typically has a general purpose objective, rather than being task-specific (e.g. a language
modelling objective). Furthermore, while generalisation studies with a train–test locus almost always

16The investigation of model instances is, however, more common with the pretrain-test locus that we will discuss later in
this section.
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explicitly consider the relationship between training and test data, this is frequently not the case with
pretrain–test studies in an in-context learning or finetuning setup: often, they do not explicitly consider
the relationship between training and test data, but merely assume a shift occurs between those stages
(e.g. Radford et al., 2019).

Multiple loci The last option on our locus axis is the multiple loci case, which we use for works that
consider, in a single study, multiple shifts between different parts of the modelling pipeline. More ex-
plicitly, experiments of this type present shifts both between the pretraining and training data, as well
as between the training and test data.17 Multiple-loci experiments evaluate all stages of the modelling
pipeline at once: they consider both how generalisable the models produced by the pretraining procedure
are, as well as whether generalisation happens in the finetuning stage itself. For instance, some studies
compare how well models with different pretraining procedures (e.g. BERT vs RoBERTa) generalise to
o.o.d. splits during finetuning (e.g. Tu et al., 2020), others how different multilingual pretraining pro-
cedures perform cross-lingual task generalisation in a finetuning stage (e.g. FitzGerald et al., 2022; Hu
et al., 2020; Yanaka et al., 2021). Because multiple-loci experiments necessarily also contain multiple
shifts, we mark them as multiple shifts in the shift type axis. The nature of these shifts may not be the
same: the shift from pretraining to training may be of any type, while the shift from training to test is
often – but not necessarily – a less extreme covariate shift. In the current version of the taxonomy, we
do not further distinguish these cases but collapse them into a single ‘multiple shifts’ category.

7 A review of existing generalisation research

In this paper, we have presented a taxonomy containing five categorical axes that can be used to char-
acterise generalisation research. We now use our taxonomy to analyse a large amount of existing gen-
eralisation research and create a comprehensive map indicating which areas are covered and which are
still unexplored. On our website18, we present interactive ways to visualise our results and to retrieve
relevant citations, which the reader can use to get a more in-depth view, to understand how their work fits
in with the rest of the literature or which areas might be promising to address. We provide instructions
for other researchers to contribute to the review, for instance by proposing to add new studies and studies
we may have missed or by proposing corrections to studies that might have been misqualified on one of
their axes values. In this section, we present our main findings.

7.1 Setup

We first briefly describe the procedures we used for the selection of the papers in our review and their
annotation.

Paper selection An initial selection of manuscripts was made through a substantive preliminary liter-
ature review by the main authors of this paper. We then carried out a search through the ACL anthology.
We started by retrieving all papers that have the (sub)words generalisation, generalization, generalise
or generalize in their title or abstract. In Figure 8, we see that the number of papers with those keywords
grew substantially over time, both in absolute and relative terms. We manually checked the abstracts
and titles of the resulting papers to remove those that were not, in fact, addressing a generalisation ques-
tion (for instance, because they proposed a generalisation of a method, or because they used random
train–test splits). Furthermore, we restricted ourselves to papers with one modality. We then annotated

17We do not distinguish cases where the test data is shifted with respect to the pretraining data from cases where it is not,
as the latter are very uncommon. It is, however, possible to set up an experiment where the pretraining and test data are drawn
from the same distribution, for example to test whether a finetuning procedure results in catastrophic forgetting.

18https://genbench.github.io/visualisations
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website, we keep track of common questions that arise when using the diagram to characterise papers in
an FAQ.
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Figure 8: We selected papers from the ACL anthology that contain the (sub)words generalisation, gen-
eralization, generalise or generalize in their title or abstract. This figure shows how many of such papers
exist per year, both absolutely (a) and percentually (b). In (c), we also show the total number of papers
and generalisation papers published each year.

the resulting papers using the taxonomy presented in the previous sections. During the annotation pro-
cess, we sometimes removed entries that upon further reading did not, in fact, contain generalisation
experiments, and we duplicated entries that contained multiple experiments with different values on one
of our axes. The findings presented in this section encompass in total 619 generalisation experiments,
presented in 449 papers. The full list of papers can be found in the second bibliography at the end of
this paper, as well as on our website19. While the conclusions in this – static – paper pertain only to
this specific selection of papers, we intend to keep expanding the number of entries on our website with
existing papers we missed or as new generalisation papers are published.

Annotation The annotation of all selected papers was done collectively by the authors of this article.
Each paper was given five labels by a first annotator, one for every axis of our taxonomy, and these labels
were then checked by a second annotator. Disagreements were discussed among the two annotators, and
for unresolved cases, a third annotator was used. As a guide, we used the diagram presented in Figure 7.
An FAQ with common questions that occurred while using this diagram, which intends to capture our
taxonomy but is naturally a simplified version of it, can be found on our website. In addition to the
taxonomy axes values, we also annotated which task(s) the studies considered. If a paper performed the
same experiment with multiple different tasks, we label it multiple tasks, use the overarching category
(e.g. NLU) when possible, or mark it as multitask if the purpose is to show that a paper can do those
all at the same time. If a paper contained multiple studies with different values on the same axis – e.g.
a paper considers both cross-domain and compositional generalisation or uses both natural shifts and
synthetic data – we record those experiments separately.

7.2 Results

We now proceed to present the main conclusions drawn from our review, in particular focusing on overall
trends for each axis (§7.2.1) and on how the different axes interact with each other (§7.2.2).

7.2.1 Overall trends on different axes

First, we discuss the overall occurrences of values on all axes, without taking into account interactions
between them. We plot the (relative) occurrences of all values in Figure 9 and their development over
time in Figure 10. Because the number of generalisation papers before 2018 included is very low (see

19https://genbench.github.io/references
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Figure 9: Summary plot displaying the relative occurrences of the categories available within the five
different axes of our taxonomy (shown clockwise are the motivation, the generalisation type, the shift
source, the shift type and the shift locus).

Figure 8a), we restricted the over-time plots to the last five years; all other statistics reported are com-
puted over all papers.

Motivations As we can see in Figure 9 (top left), by far the most common motivation to test gener-
alisation is the practical motivation. The intrinsic and cognitive motivations follow, whereas the studies
in our review that consider generalisation from a fairness perspective make up only 3% of the total. We
hypothesise that one of the reasons that this percentage is so low stems from the fact that our keywords
search in the anthology was not optimal for detecting fairness studies, and we welcome researchers to
suggest other generalisation studies with a fairness motivation for review. We will include them in an
updated version of this paper. However, we also speculate that only relatively recently attention for
the potential harmfulness of models trained on large, uncontrolled corpora is starting to grow and that
fairness has simply not been studied as much in the context of generalisation yet. Due to the extremely
low number of fairness studies in our review, it is not possible to observe a reliable growth of fairness
papers in the last few years. In Figure 10a, we see that trends on the motivation axis have some small
fluctuations over time but have been relatively stable over the past five years.

Generalisation type For generalisation types (Figure 9, left side), we find that cross-domain is the
most frequent, making up more than 30% of all studies, followed by robustness, cross-task and compo-
sitional generalisation. Structural and cross-lingual generalisation are the least commonly investigated.
As already mentioned in the respective section, studies looking at the understanding of syntactic and
morphological structure typically focus more on whether models can capture structures at all, rather
than on whether they generalise to new structures, which could be a potential explanation for the fact
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Figure 10: Trends from the past five years for three of the taxonomy’s axes (motivation, shift type and
shift locus), normalised by the total number of papers annotated per year.

that such studies are underrepresented. The underrepresentation of cross-lingual studies could, similar
to studies with a fairness motivation, be partly explained by the fact that they might less frequently use
the word generalisation in their title or abstract. However, we hypothesise that, at least in part, the low
numbers are also reflective of the English-centric approach that is usually taken in NLP. As with fair-
ness studies, we encourage researchers to suggest cross-lingual generalisation studies that we may have
missed via our website so that we can determine better to what extent cross-lingual studies are, in fact,
underrepresented.

Shift type Data shift types (Figure 9, bottom) are very unevenly distributed over their potential values:
the vast majority of generalisation research considers covariate shift. Given the fact that covariate shift
can occur between any two stages in the modelling pipeline, and label and full shift typically only occur
between pretraining and finetuning, this is – to some extent – to be expected. Furthermore, covariate
shift is more easily addressed by most current modelling techniques. More unexpected, perhaps, is the
relatively high amount of assumed shifts, which correspond to studies that claim to test generalisation
but do not explicitly consider how the test data relates to data used at various stages of model training.
In Figure 10b, we see that the percentage of assumed shifts has increased over the past few years. We
hypothesise that this trend, which is a step in the wrong direction in that it indicates less precision about
what we evaluate rather than more, is predominantly caused by the use of increasingly large, general-
purpose training corpora. Such large corpora, which are often also not in the public domain, make it very
challenging to analyse the relationship between the training and testing data and, consequently, make
it hard to determine what kind of conclusions can be drawn based on test accuracies. More promising,
instead, is the fact that several studies consider multiple shifts, meaning that they assess generalisation
throughout the entire modelling pipeline rather than only in one stage.

Shift source On the shift source axis (Figure 9, bottom right), we see that almost half of the reviewed
generalisation studies consider naturally occurring shifts: natural corpora that are not deliberately split
along a particular dimension. As we will see later, this type of data source is most prevalent in cross-task
and cross-domain generalisation studies, for which such naturally different corpora are widely available.
The next most frequent category is generated shifts, where one of the datasets involved is generated with
a specific generalisation property in mind, and artificially partitioned natural data, describing settings in
which all data is natural, but the way it is split between train and test is not. Fully generated datasets are
less common, making up only 11% of the total number of studies.

Shift locus Lastly, for the locus axis (Figure 9, top right), we see that the majority of cases focuses
on (finetune) train–test splits. Much fewer studies focus on shifts between pretraining and training or
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pretraining and testing. Similar to the previous axis, we observe that a comparatively small percentage
of studies considers shifts in multiple stages of the modelling pipeline. We hypothesise that, at least in
part, this might be driven by the larger amount of compute that is typically required for those scenarios.
In Figure 10c, however, we also see an alternative explanation for the lower overall frequency of studies
considering multiple loci and pretrain–test loci: the values populating Figure 9 are averaged over all
years represented in our paper selection, but the multiple and pretrain–test loci became more popular
only in the last few years.

7.2.2 Interactions between axes

Next, we consider interactions between different axes. Are there any combinations of axes that oc-
cur together very often or combinations that are instead rare? We encourage the reader to view these
interactions dynamically on our website. Here, we discuss a few trends.

What data shift source is used for different generalisation types? In Figure 11a, we plot the fre-
quency of each data source per generalisation type, normalised by the total number of times that gen-
eralisation type occurs (to make patterns comparable between generalisation types). From this plot, we
can see that the type of data used is vastly different across different types of generalisation tests. Com-
positional generalisation, for instance, is predominantly tested with fully generated data, a data type that
hardly occurs in research considering robustness, cross-lingual or cross-task generalisation. Those three
types of generalisation are most frequently tested with naturally occurring shifts or, in some cases, with
artificial splits of natural corpora. Structural generalisation, on the other hand, is the only generalisation
type that appears to be tested across all different data types. As far as we know, there are very few
studies that directly compare results between different sources of shift – for instance, to investigate to
what extent results on generated shifts or fully generated data are indicative of performances on natural
corpora.20 Such studies could provide insight into how choices in the experimental design impact the
conclusions that are drawn from the experiment, and we believe that they are an important direction for
future work.

For which loci of shift are different generalisation types studied? Another interesting question to
ask is for which locus different generalisation types are considered. In Figure 11b, we see that of all
the generalisation types, only cross-task generalisation is frequently investigated in the pretrain-train
and pretrain–test stages. For all other types of generalisation, the vast majority of tests are conducted
in the train–test or finetune-train/test stage. In some cases, these differences are to be expected: as
general-purpose pretrained models are usually trained on very large, relatively uncontrolled corpora, in-
vestigating how they generalise to a different domain without further finetuning is typically not possible,
and neither is evaluating their robustness, which typically also requires more detailed knowledge of the
training data. The statistics also confirm the absence of studies that consider compositional generalisa-
tion from pretraining to finetuning, or even from pretraining to training, which as we previously reported
(§3.1) is philosophically and theoretically challenging in such setups. A final observation is the relative
under-representation of studies with multiple loci across all generalisation types, especially given the
large number of studies that consider generalisation in the finetuning stage or the pretrain-training stage.
Those studies have used both a pretraining and finetuning stage but considered generalisation in only one
of those. We hope to see this trend changing in the future, with more studies considering generalisation
in the entire modelling pipeline, rather than only in a specific part of it.

20An example of such a study would be the work of Chaabouni et al. (2021), who investigate whether performance improve-
ments on SCAN transfer to machine translation models trained on natural data.
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Figure 11: Heatmaps of interactions between axes. The maps are normalised by the total row value. This
facilitates the comparison of patterns between rows but renders columns incomparable. We welcome
readers who would like to see different normalisations or readers that are curious about interactions
between other axes to have a look at our website, where they can generate other plots based on the same
underlying data.
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Which types of data shifts occur across different loci? Another interaction we would like to discuss
is the one between the shift locus and the type of data shift. We plot this interaction in Figure 11c.
A notable observation is that assumed shifts mostly occur in the pretrain–test locus, which confirms
our hypothesis put forward earlier when discussing frequencies on the shift type axis – that assumed
shifts are likely caused by the use of increasingly large, general-purpose training corpora. When such
pretrained models are further finetuned, they often consider either a shift between pretraining and fine-
tuning where new labels are introduced, or a covariate shift in the finetuning stage and, as such, do not
require an in-depth understanding of the pretraining corpus.21 When such models are directly evaluated,
however, the only shift that can be considered is the one between the very large pretraining corpus and
the test corpus. This trend points to a substantial challenge when it comes to evaluating generalisation
for models with limited knowledge about their pretraining.

How does motivation drive generalisation research? The last pattern we would like to discuss is the
relationship between the motivation behind a study and the other axes, focusing in particular on general-
isation type, shift locus and shift source, as shown in Figure 11d-11f. Considering first the relationship
between motivation and generalisation type (Figure 11d), we see that cross-domain, robustness, cross-
task and cross-lingual generalisation are predominantly motivated by practical considerations. Robust-
ness generalisation studies are also frequently motivated by the interest in understanding how models
work (the intrinsic motivation). When looking at compositional and structural generalisation studies, we
see that both are frequently driven by cognitive motivations – which is to be expected given the impor-
tance of these concepts in human cognition and intelligence. The motivation given most frequently for
compositional generalisation, however, is a practical one. While in human learning, compositionality is
indeed often associated with important practical properties – speed of learning, quick generalisation –
as far as we know, there is little empirical evidence that compositional models actually perform better
for natural language tasks. A similar apparent mismatch can be seen in Figure 11f when looking at the
practical motivation. Practical generalisation tests are typically aimed at improving models or at being
directly informative of a model’s applicability. Nonetheless, almost 25% of the practically motivated
studies use either artificially partitioned natural data or even fully generated data. To what extent could
their conclusions then actually be informative of models applied in practical scenarios? These apparent
mismatches between the motivation and the experimental setup exemplify the importance of the moti-
vation axis in our taxonomy – being aware and explicit about it should ensure that the conclusions of a
study are indeed informative of the question it claims to answer.

Another interesting observation that can be made from the interactions between motivation and shift
locus is that the vast majority of cognitively motivated studies are conducted in a train–test setup. While
there are many good reasons for this, conclusions about human generalisation are drawn from a much
more varied range of ‘experimental setups’. For instance, any experiments done with adults are more
similar to finetune train–test or pretrain–test locus than to the train–test locus, as adults have a life-
long experience over which the experimenter has little control beyond participant selection. On the one
hand, this suggests that generalisation with a cognitive motivation should perhaps be evaluated more
with those loci. On the other hand, it begs the question: for the – previously reported challenging –
evaluation of generalisation of LLMs trained on uncontrolled corpora in a pretrain–test setting, could
we perhaps take inspiration from how generalisation is evaluated in ‘pretrained’ humans? While there
are, of course, substantial differences between the assumptions that can reasonably be made about the
history of a human and the pretraining of an LLM22, we still believe that input from domain experts that

21The observant reader might note that there are, in fact, also several covariate and full shifts with a pretrain-train locus, as
well as covariate shifts with a pretrain–test locus. These typically do not represent experiments with LLMS but instead, for
instance, consider a multi-stage process for domain adaptation, which also includes a zero-shot comparison.

22On the one hand, for a human, some assumptions can be safely made or even verified with a participant – for instance,
unless a person has previously participated in a psycholinguistic experiment, we can almost be certain that they have never
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have extensively considered human generalisation might be very beneficial to improve generalisation
testing in these more challenging setups.

8 Conclusion

While the ability to generalise well – i.e. to successfully transfer skills learned from past experience to
new experiences – is considered to be one of the primary desiderata for NLP models, there is very little
agreement on what kind of generalisation behaviour modern-age NLP models should exhibit, and under
what conditions that should be evaluated. For decades, generalisation has been simply evaluated with
random train–test splits. The recent past, however, has seen a number of studies illustrating that models
that exhibit near-perfect performances on such i.i.d. splits can sometimes drastically fail in a wide range
of scenarios that require different forms of generalisation. This body of work demonstrates the need for
more comprehensive generalisation testing, but does not provide much guidance on what that should
look like: different papers use different experimental setups, different types of data and entertain even
different ideas about what it means for an NLP model to generalise well. As a consequence, even though
its importance is almost undisputed, extensive, state-of-the-art generalisation testing is not currently the
standard in NLP. With this paper, we aimed to set the first steps towards making it the new status quo.

8.1 Our generalisation taxonomy

We presented a new framework to systematise and understand generalisation research, with the ultimate
goal to lay the groundwork for making generalisation testing the new status quo in NLP. The first part
of this framework consists of a generalisation taxonomy that can be used to characterise generalisation
studies along various dimensions. This taxonomy, which is designed based on an extensive review of
generalisation papers in NLP, can be used to critically analyse existing generalisation research and to
structure new studies. It contains five nominal axes, that describe why the study was executed (the main
motivation of the study), what the study intends to evaluate (the type of generalisation they aim to
solve), and how it does so (the type of data shift they are considering, the source by which this data
shift was obtained, and the locus in which the shift is investigated). An overview of our taxonomy is
provided in Figure 1; the axes are discussed in §2-6.

8.2 Our analysis

To illustrate the use and usefulness of our taxonomy, we analysed by means of it 449 papers that have
the (sub)words generali(s/z)ation or generali(s/z)e in their title or abstract. We hope that researchers
will use our taxonomy to design future generalisation studies and to critically and explicitly characterise
their experiments. To this end, on our website, we provide an annotation diagram that can be used to
design and conceptualise generalisation studies. Through our extensive analysis, we demonstrated that
the taxonomy is applicable to a wide range of generalisation studies, and we were able to provide a
comprehensive map of the field, observing overall patterns and making suggestions for areas that should
be prioritised in the future. In §7, we described the results of this review: we discussed overall patterns
on individual axes, as well as interactions between different axes and trends over time – all illustrated
with compelling data visualisations. Our most important conclusions and recommendations are:

• The goal of a study is not always perfectly lined up with its experimental design. We advise that
future work is explicit about their motivations – which strongly impact what sort of generalisation

conjugated nonce words. For an LLM, this is less trivially true, as reports about such human experiments may have been
present in their (pre)training data. On the other hand, for an LLM it is possible to inspect the data that they have seen during
pretraining, which is evidently not the case for humans.
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is even desirable – and should incorporate deliberate assessments to ensure that the experimental
setup is aligned with the goal of the study.

• Cross-lingual studies and generalisation studies motivated by fairness goals are underrepresented.
We suggest that these areas be given more attention in future work.

• Papers that target similar generalisation questions vary widely in the type of evaluation setup they
use. In our view, the field would benefit from more meta-studies that consider how the results of
experiments with different experimental paradigms compare to each other.

• The vast majority of generalisation studies focuses on only one stage of the modelling pipeline.
More work is needed that considers generalisation in all stages of training, to prioritise models
whose generalising behaviour persists throughout their training curriculum.

• Recent popular NLP models that can be tested directly for their generalisation from pretraining to
testing (e.g. in prompting setups, without any further model training) have often been evaluated
without considering the relationship between the (pre)training and the test data. We envisage that
this is due to the fact that generalisation is particularly difficult to assess when large uncontrolled
training data is involved, and we suggest that inspiration might be taken from how generalisation
is evaluated in experiments with adult humans, where control and access to the “pretraining” data
of a participant are unattainable.

Along with this paper, we also launch a website with a set of visualisation tools and the possibility
to browse through our review to find studies with specific features, as well as relevant paper references.
While the review and conclusions presented in this paper are necessarily static, we commit to keeping
the entries on the website up to date when new papers on generalisation are published and we encourage
researchers to engage with our online dynamic review by submitting both new studies and existing
studies we might have missed – through the contributions page of our website.

8.3 Future work

By providing a systematic framework and set of concrete (online) tools to allow for a structured un-
derstanding of generalisation, we believe we have set the necessary first step towards making state-of-
the-art generalisation testing the new status quo in NLP. Our work is thus by no means the end of the
road. While our taxonomy can make future generalisation research in NLP more comparable, structured
and carefully designed, and while our survey suggests promising research directions, this work does not
provide standardised data or procedures for generalisation testing. We envision that important gener-
alisation tests should be hosted on a shared platform, along with a leaderboard to make generalisation
testing more accessible and transparent. A large community of NLP researchers and domain experts
should determine which tests to prioritise. Lastly, in the same way that our thoughts on how generali-
sation should be evaluated have evolved with our models in the past, it will likely continue to do so in
the future. What we consider important to evaluate now might change next year, and when models get
better at setups considered difficult now, we might discover new types of generalisation that we had not
thought of before. How we evaluate models should be reflective of that, and which tests are prioritised
should thus evolve along with our models and knowledge. Ideally, all of those aspects should be incor-
porated in the next steps towards making state-of-the-art generalisation testing the new status quo for
any new model that is proposed, and we look forward to working on it.

9 Limitations

Designing a coherent, consistent, and at the same time, usable taxonomy of generalisation research in
NLP is a non-trivial task, which required substantial discussion among the authors. In this section,
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we report the main decisional trade-offs of our work, concerning the definition of the taxonomy, the
annotation process and the selection of papers to review.

9.1 Taxonomy design: the axes and their values

We designed this taxonomy by ensuring that the selected set of axes and axis values would highlight
theoretically important but also practically functional distinctions between generalisation studies – yet
our selection comes with limitations. One such limitation is that the axis values are relatively coarse.
This avoids fragmentation in the analysis and allows to draw higher-level conclusions, but sometimes
also groups together papers that could be regarded separately. An already discussed example are the
studies with a pretrain-train locus, which by definition all share that they include more than one training
stage and investigate generalisation in the first one. This category thus contains both papers that use a
general-purpose pretraining objective and then finetune on different tasks and studies whose finetuning
objective matches the pretraining objectives (e.g. studies that consider domain-adaptation in a continual
learning setup). While those differences are – at least in part – reflected on other axes, in some cases it
might be helpful to distinguish those two cases more explicitly.

Something similar occurs on the shift type axis. Firstly, when there are multiple shifts, we do not cur-
rently distinguish between all possible combinations of individual shift types. Given the relatively low
number of studies that actually consider multiple shifts, we prioritised intelligibility over completeness,
but if the number of multiple-shift studies increases in the future, it could become useful to indicate
all individual shift types in the case of studies with multiple shifts. Secondly, while the three formal
shift types that we consider are statistically well-grounded, shifts of the same type can still largely vary.
Whether the distance between two distributions is small or large might make a substantial difference
for the difficulty of the generalisation problem, which is something that is currently not reflected in our
taxonomy. Although quantifying differences between distributions is often problematic in practice, we
believe that adjusting the taxonomy to capture the difficulty of generalising to a particular shift can be
helpful in the future. More generally, we imagine that future experimental paradigms might call for the
addition of values on some of the axes, or even the addition of new axes.

9.2 Annotation: axes values in practice

In the description of the axes and their different values, we aimed to be as comprehensive and precise
as possible. In practice, however, there are always cases in which the actual category of a paper is de-
batable. Sometimes this occurs because the paper itself is not clear about what exactly it attempts to
evaluate or about its motivation; we hope that our taxonomy will reduce the number of such cases in the
future. In other instances, it is simply difficult to apply some concepts or distinctions, in spite of their
theoretical sharpness, to concrete studies. A clear example of this challenge is the shift type. In theory,
p(x), p(y|x) and p(y) are clearly defined concepts; in practice, it is usually impossible to estimate the
actual difference between two (natural) distributions. Some researchers might even argue that, in prac-
tice, train and test sets are virtually always distributionally different. For the purpose of systematising
generalisation testing and characterising experiments, however, this is not a useful observation. In our
taxonomy design and annotations, we aimed to make distinctions that we deemed useful, rather than
relying on “true” but unknown differences between distributions.

9.3 Paper selection

To ensure that our selection of papers was not biased toward works already known by the authors, we
automatically selected a large number of papers from the ACL anthology by searching for generalisation
keywords in the abstract and title. While this resulted in a relatively large amount of papers, there are
likely papers about generalisation that we did not retrieve with this approach. As mentioned earlier
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(§7.2.1), we suspect that papers about cross-lingual generalisation and papers with a fairness motivation
may require a different set of keywords. We hope that researchers will take the effort to inform us about
generalisation papers that we may have missed, to guarantee that the selection of surveyed papers is as
complete as possible.

Aside from unintentionally missed papers, we also deliberately excluded a few types of papers.
We did not include any studies that considered more than one modality. While we believe they are
interesting to consider from a generalisation perspective, they are also more difficult to characterise
within a single taxonomy, as they involve more distributions (with sometimes very different support)
and thus more distribution shifts. We consider including such papers a compelling step for future work.
Another set of papers that we excluded are those that do not conduct behavioural experiments but look at
the generalisability of representations (e.g. probing papers). We do not see any a priori reason that they
could not be characterised with our taxonomy, and we believe this would be a valuable enterprise. In
particular, although marking the difference between behavioural and representational experiments might
require updating the taxonomy, a comparison of behavioural and representational experiments with the
same axis values might make for an interesting meta-study.

9.4 Is generalisation always necessary?

A last critical observation that we would like to make is that our work builds on the assumption that
strong generalisation skills are considered crucial for models of NLP. While we generally believe this
to be true, there might be cases where generalisation is not in fact needed. Provocatively, one could
argue that for LLMs trained on extremely large English data sets, practically speaking the vast majority
of scenarios that one might want to use the model for is actually close to i.i.d. and that more complex
forms of generalisation are thus not needed. We abstain from judging whether and when this holds, but
argue that if a researcher believes that their setup requires no generalisation, they should clearly state so
and explain why they believe that to be the case.
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Marasović Ana, Zhou Mengfei, Palmer Alexis, Frank Anette. Modal Sense Classification At Large:
Paraphrase-Driven Sense Projection, Semantically Enriched Classification Models and Cross-Genre
Evaluations // Linguistic Issues in Language Technology, Volume 14, 2016 - Modality: Logic, Se-
mantics, Annotation, and Machine Learning. sept 2016.

Maronikolakis Antonis, Schütze Hinrich. Multidomain Pretrained Language Models for Green NLP //
Proceedings of the Second Workshop on Domain Adaptation for NLP. Kyiv, Ukraine: Association for
Computational Linguistics, IV 2021. 1–8.

Marzinotto Gabriel, Damnati Géraldine, Béchet Frédéric, Favre Benoît. Robust Semantic Parsing with
Adversarial Learning for Domain Generalization // Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Technologies,
Volume 2 (Industry Papers). Minneapolis, Minnesota: Association for Computational Linguistics, VI
2019. 166–173.

McCann Bryan, Keskar Nitish Shirish, Xiong Caiming, Socher Richard. The natural language decathlon:
Multitask learning as question answering // arXiv preprint arXiv:1806.08730. 2018.

McCoy R. Thomas, Frank Robert, Linzen Tal. Does Syntax Need to Grow on Trees? Sources of Hi-
erarchical Inductive Bias in Sequence-to-Sequence Networks // Transactions of the Association for
Computational Linguistics. 2020a. 8. 125–140.

McCoy R. Thomas, Min Junghyun, Linzen Tal. BERTs of a feather do not generalize together: Large
variability in generalization across models with similar test set performance // Proceedings of the
Third BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP. Online:
Association for Computational Linguistics, XI 2020b. 217–227.

84



McCoy Tom, Pavlick Ellie, Linzen Tal. Right for the Wrong Reasons: Diagnosing Syntactic Heuristics
in Natural Language Inference // Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics. Florence, Italy: Association for Computational Linguistics, VII 2019.
3428–3448.

McCurdy Kate, Goldwater Sharon, Lopez Adam. Inflecting When There’s No Majority: Limitations
of Encoder-Decoder Neural Networks as Cognitive Models for German Plurals // Proceedings of
the 58th Annual Meeting of the Association for Computational Linguistics. Online: Association for
Computational Linguistics, VII 2020. 1745–1756.

McHardy Robert, Adel Heike, Klinger Roman. Adversarial Training for Satire Detection: Controlling
for Confounding Variables // Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long
and Short Papers). Minneapolis, Minnesota: Association for Computational Linguistics, VI 2019.
660–665.

Mehta Sanket Vaibhav, Rao Jinfeng, Tay Yi, Kale Mihir, Parikh Ankur, Strubell Emma. Improving
Compositional Generalization with Self-Training for Data-to-Text Generation // Proceedings of the
60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers).
Dublin, Ireland: Association for Computational Linguistics, V 2022. 4205–4219.

Merity Stephen, Xiong Caiming, Bradbury James, Socher Richard. Pointer Sentinel Mixture Models //
5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26,
2017, Conference Track Proceedings. 2017.

M’hamdi Meryem, Kim Doo Soon, Dernoncourt Franck, Bui Trung, Ren Xiang, May Jonathan. X-
METRA-ADA: Cross-lingual Meta-Transfer learning Adaptation to Natural Language Understanding
and Question Answering // Proceedings of the 2021 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies. Online: Association
for Computational Linguistics, VI 2021. 3617–3632.

Mihaylov Todor, Frank Anette. Discourse-Aware Semantic Self-Attention for Narrative Reading Com-
prehension // Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-
IJCNLP). Hong Kong, China: Association for Computational Linguistics, XI 2019. 2541–2552.

Min Junghyun, McCoy R. Thomas, Das Dipanjan, Pitler Emily, Linzen Tal. Syntactic Data Augmenta-
tion Increases Robustness to Inference Heuristics // Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics. Online: Association for Computational Linguistics, VII
2020. 2339–2352.

Min Sewon, Lewis Mike, Hajishirzi Hannaneh, Zettlemoyer Luke. Noisy Channel Language Model
Prompting for Few-Shot Text Classification // Proceedings of the 60th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1: Long Papers). Dublin, Ireland: Association for
Computational Linguistics, V 2022. 5316–5330.

Mishra Swaroop, Khashabi Daniel, Baral Chitta, Hajishirzi Hannaneh. Cross-Task Generalization via
Natural Language Crowdsourcing Instructions // Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers). Dublin, Ireland: Association
for Computational Linguistics, V 2022. 3470–3487.

Mishra Swaroop, Sachdeva Bhavdeep Singh. Do We Need to Create Big Datasets to Learn a Task? //
Proceedings of SustaiNLP: Workshop on Simple and Efficient Natural Language Processing. Online:
Association for Computational Linguistics, XI 2020. 169–173.

85



Moeller Sarah, Kazeminejad Ghazaleh, Cowell Andrew, Hulden Mans. A Neural Morphological Ana-
lyzer for Arapaho Verbs Learned from a Finite State Transducer // Proceedings of the Workshop on
Computational Modeling of Polysynthetic Languages. Santa Fe, New Mexico, USA: Association for
Computational Linguistics, VIII 2018. 12–20.

Moghimifar Farhad, Qu Lizhen, Zhuo Terry Yue, Haffari Gholamreza, Baktashmotlagh Mahsa. Neural-
Symbolic Commonsense Reasoner with Relation Predictors // Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics and the 11th International Joint Conference
on Natural Language Processing (Volume 2: Short Papers). Online: Association for Computational
Linguistics, VIII 2021. 797–802.

Moosavi Nafise Sadat, Strube Michael. Lexical Features in Coreference Resolution: To be Used With
Caution // Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics
(Volume 2: Short Papers). Vancouver, Canada: Association for Computational Linguistics, VII 2017.
14–19.

Moosavi Nafise Sadat, Strube Michael. Using Linguistic Features to Improve the Generalization Capa-
bility of Neural Coreference Resolvers // Proceedings of the 2018 Conference on Empirical Methods
in Natural Language Processing. Brussels, Belgium: Association for Computational Linguistics, X-XI
2018. 193–203.

Mosca Edoardo, Agarwal Shreyash, Rando Ramírez Javier, Groh Georg. “That Is a Suspicious Reac-
tion!”: Interpreting Logits Variation to Detect NLP Adversarial Attacks // Proceedings of the 60th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Dublin,
Ireland: Association for Computational Linguistics, V 2022. 7806–7816.

Mueller Aaron, Frank Robert, Linzen Tal, Wang Luheng, Schuster Sebastian. Coloring the Blank Slate:
Pre-training Imparts a Hierarchical Inductive Bias to Sequence-to-sequence Models // Findings of the
Association for Computational Linguistics: ACL 2022. Dublin, Ireland: Association for Computa-
tional Linguistics, V 2022. 1352–1368.

Mul Mathijs, Zuidema Willem. Siamese recurrent networks learn first-order logic reasoning and exhibit
zero-shot compositional generalization // CoRR, abs/1906.00180. 2019.

Muller Benjamin, Soldaini Luca, Koncel-Kedziorski Rik, Lind Eric, Moschitti Alessandro. Cross-Lingual
GenQA: Open-Domain Question Answering with Answer Sentence Generation. 2021.

Nadeem Farah, Ostendorf Mari. Estimating Linguistic Complexity for Science Texts // Proceedings
of the Thirteenth Workshop on Innovative Use of NLP for Building Educational Applications. New
Orleans, Louisiana: Association for Computational Linguistics, VI 2018. 45–55.

Naderi Nona, Hirst Graeme. Using context to identify the language of face-saving // Proceedings of the
5th Workshop on Argument Mining. Brussels, Belgium: Association for Computational Linguistics,
XI 2018. 111–120.

Naik Aakanksha, Rose Carolyn. Towards Open Domain Event Trigger Identification using Adversarial
Domain Adaptation // Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics. Online: Association for Computational Linguistics, VII 2020. 7618–7624.

Nan Linyong, Radev Dragomir, Zhang Rui, Rau Amrit, Sivaprasad Abhinand, Hsieh Chiachun, Tang
Xiangru, Vyas Aadit, Verma Neha, Krishna Pranav, Liu Yangxiaokang, Irwanto Nadia, Pan Jessica,
Rahman Faiaz, Zaidi Ahmad, Mutuma Mutethia, Tarabar Yasin, Gupta Ankit, Yu Tao, Tan Yi Chern,
Lin Xi Victoria, Xiong Caiming, Socher Richard, Rajani Nazneen Fatema. DART: Open-Domain

86



Structured Data Record to Text Generation // Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Technologies.
Online: Association for Computational Linguistics, VI 2021. 432–447.

Nangia Nikita, Bowman Samuel R. Human vs. Muppet: A Conservative Estimate of Human Perfor-
mance on the GLUE Benchmark // Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics. Florence, Italy: Association for Computational Linguistics, VII 2019.
4566–4575.

Nejadgholi Isar, Kiritchenko Svetlana. On Cross-Dataset Generalization in Automatic Detection of On-
line Abuse // Proceedings of the Fourth Workshop on Online Abuse and Harms. Online: Association
for Computational Linguistics, XI 2020. 173–183.

Newman Benjamin, Hewitt John, Liang Percy, Manning Christopher D. The EOS Decision and Length
Extrapolation // Proceedings of the Third BlackboxNLP Workshop on Analyzing and Interpreting
Neural Networks for NLP. Online: Association for Computational Linguistics, XI 2020. 276–291.

Ng Nathan, Cho Kyunghyun, Ghassemi Marzyeh. SSMBA: Self-Supervised Manifold Based Data Aug-
mentation for Improving Out-of-Domain Robustness // Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing (EMNLP). Online: Association for Computational
Linguistics, XI 2020. 1268–1283.

Nguyen Thong, Yates Andrew, Zirikly Ayah, Desmet Bart, Cohan Arman. Improving the Generalizability
of Depression Detection by Leveraging Clinical Questionnaires // Proceedings of the 60th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Dublin, Ireland:
Association for Computational Linguistics, V 2022. 8446–8459.

Nguyen Vincent, Karimi Sarvnaz, Xing Zhenchang. Combining Shallow and Deep Representations for
Text-Pair Classification // Proceedings of the The 19th Annual Workshop of the Australasian Lan-
guage Technology Association. Online: Australasian Language Technology Association, XII 2021.
68–78.

Nicolai Garrett, Silfverberg Miikka. Noise Isn’t Always Negative: Countering Exposure Bias in
Sequence-to-Sequence Inflection Models // Proceedings of the 28th International Conference on
Computational Linguistics. Barcelona, Spain (Online): International Committee on Computational
Linguistics, XII 2020. 2837–2846.

Nie Yixin, Williamson Mary, Bansal Mohit, Kiela Douwe, Weston Jason. I like fish, especially dolphins:
Addressing Contradictions in Dialogue Modeling // Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the 11th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers). Online: Association for Computational Linguistics,
VIII 2021. 1699–1713.

Nye Maxwell, Solar-Lezama Armando, Tenenbaum Josh, Lake Brenden M. Learning compositional
rules via neural program synthesis // Advances in Neural Information Processing Systems. 2020. 33.
10832–10842.

Ontanon Santiago, Ainslie Joshua, Fisher Zachary, Cvicek Vaclav. Making Transformers Solve Com-
positional Tasks // Proceedings of the 60th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). Dublin, Ireland: Association for Computational Linguistics, V
2022. 3591–3607.

87



Oren Inbar, Herzig Jonathan, Berant Jonathan. Finding needles in a haystack: Sampling Structurally-
diverse Training Sets from Synthetic Data for Compositional Generalization // Proceedings of the
2021 Conference on Empirical Methods in Natural Language Processing. Online and Punta Cana,
Dominican Republic: Association for Computational Linguistics, XI 2021. 10793–10809.

Oren Inbar, Herzig Jonathan, Gupta Nitish, Gardner Matt, Berant Jonathan. Improving Compositional
Generalization in Semantic Parsing // Findings of the Association for Computational Linguistics:
EMNLP 2020. Online: Association for Computational Linguistics, XI 2020. 2482–2495.

Panda Subhadarshi, Levitan Sarah Ita. Detecting Multilingual COVID-19 Misinformation on Social
Media via Contextualized Embeddings // Proceedings of the Fourth Workshop on NLP for Inter-
net Freedom: Censorship, Disinformation, and Propaganda. Online: Association for Computational
Linguistics, VI 2021. 125–129.

Papangelis Alexandros, Gopalakrishnan Karthik, Padmakumar Aishwarya, Kim Seokhwan, Tur Gokhan,
Hakkani-Tur Dilek. Generative Conversational Networks // Proceedings of the 22nd Annual Meeting
of the Special Interest Group on Discourse and Dialogue. Singapore and Online: Association for
Computational Linguistics, VII 2021. 111–120.

Pappas Nikolaos, Henderson James. GILE: A Generalized Input-Label Embedding for Text Classifica-
tion // Transactions of the Association for Computational Linguistics. 2019. 7. 139–155.

Patel Arkil, Bhattamishra Satwik, Blunsom Phil, Goyal Navin. Revisiting the Compositional Gener-
alization Abilities of Neural Sequence Models // Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume 2: Short Papers). Dublin, Ireland: Association
for Computational Linguistics, V 2022. 424–434.

Pedinotti Paolo, Rambelli Giulia, Chersoni Emmanuele, Santus Enrico, Lenci Alessandro, Blache
Philippe. Did the Cat Drink the Coffee? Challenging Transformers with Generalized Event Knowl-
edge // Proceedings of *SEM 2021: The Tenth Joint Conference on Lexical and Computational
Semantics. Online: Association for Computational Linguistics, VIII 2021. 1–11.

Pelicon Andraž, Shekhar Ravi, Martinc Matej, Škrlj Blaž, Purver Matthew, Pollak Senja. Zero-shot
Cross-lingual Content Filtering: Offensive Language and Hate Speech Detection // Proceedings of
the EACL Hackashop on News Media Content Analysis and Automated Report Generation. Online:
Association for Computational Linguistics, IV 2021. 30–34.

Peng Baolin, Li Chunyuan, Zhang Zhu, Zhu Chenguang, Li Jinchao, Gao Jianfeng. RADDLE: An Eval-
uation Benchmark and Analysis Platform for Robust Task-oriented Dialog Systems // Proceedings of
the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing (Volume 1: Long Papers). Online: Association for
Computational Linguistics, VIII 2021. 4418–4429.

Peng Baolin, Zhu Chenguang, Li Chunyuan, Li Xiujun, Li Jinchao, Zeng Michael, Gao Jianfeng. Few-
shot Natural Language Generation for Task-Oriented Dialog // Findings of the Association for Com-
putational Linguistics: EMNLP 2020. Online: Association for Computational Linguistics, XI 2020.
172–182.

Peng Nanyun, Dredze Mark. Multi-task Domain Adaptation for Sequence Tagging // Proceedings of the
2nd Workshop on Representation Learning for NLP. Vancouver, Canada: Association for Computa-
tional Linguistics, VIII 2017. 91–100.

88



Perez Ethan, Karamcheti Siddharth, Fergus Rob, Weston Jason, Kiela Douwe, Cho Kyunghyun. Finding
Generalizable Evidence by Learning to Convince Q&A Models // Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP). Hong Kong, China: Association for Computational
Linguistics, XI 2019. 2402–2411.

Perez Ethan, Kiela Douwe, Cho Kyunghyun. True Few-Shot Learning with Language Models // Ad-
vances in Neural Information Processing Systems. 2021.

Pérez-Mayos Laura, Ballesteros Miguel, Wanner Leo. How much pretraining data do language models
need to learn syntax? // Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing. Online and Punta Cana, Dominican Republic: Association for Computational
Linguistics, XI 2021. 1571–1582.

Pham MinhQuang, Crego Josep, Yvon François, Senellart Jean. Generic and Specialized Word Embed-
dings for Multi-Domain Machine Translation // Proceedings of the 16th International Conference on
Spoken Language Translation. Hong Kong: Association for Computational Linguistics, XI 2-3 2019.

Phang Jason, Févry Thibault, Bowman Samuel R. Sentence Encoders on STILTs: Supplementary Train-
ing on Intermediate Labeled-data Tasks // ArXiv. 2018. abs/1811.01088.

Philip Jerin, Berard Alexandre, Gallé Matthias, Besacier Laurent. Monolingual Adapters for Zero-Shot
Neural Machine Translation // Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP). Online: Association for Computational Linguistics, XI 2020. 4465–
4470.

Phung Duy, Minh Tran Hieu, Nguyen Minh Van, Nguyen Thien Huu. Learning Cross-lingual Repre-
sentations for Event Coreference Resolution with Multi-view Alignment and Optimal Transport //
Proceedings of the 1st Workshop on Multilingual Representation Learning. Punta Cana, Dominican
Republic: Association for Computational Linguistics, XI 2021. 62–73.

Picco Gabriele, Hoang Thanh Lam, Sbodio Marco Luca, Lopez Vanessa. Neural Unification for Logic
Reasoning over Natural Language // Findings of the Association for Computational Linguistics:
EMNLP 2021. Punta Cana, Dominican Republic: Association for Computational Linguistics, XI
2021. 3939–3950.

Pimentel Tiago, Ryskina Maria, Mielke Sabrina J., Wu Shijie, Chodroff Eleanor, Leonard Brian, Nico-
lai Garrett, Ghanggo Ate Yustinus, Khalifa Salam, Habash Nizar, El-Khaissi Charbel, Goldman
Omer, Gasser Michael, Lane William, Coler Matt, Oncevay Arturo, Montoya Samame Jaime Rafael,
Silva Villegas Gema Celeste, Ek Adam, Bernardy Jean-Philippe, Shcherbakov Andrey, Bayyr-ool
Aziyana, Sheifer Karina, Ganieva Sofya, Plugaryov Matvey, Klyachko Elena, Salehi Ali, Krizhanovsky
Andrew, Krizhanovsky Natalia, Vania Clara, Ivanova Sardana, Salchak Aelita, Straughn Christopher,
Liu Zoey, Washington Jonathan North, Ataman Duygu, Kieraś Witold, Woliński Marcin, Suhardijanto
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